Metamath Proof Explorer


Theorem fbelss

Description: An element of the filter base is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbelss ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑋𝐹 ) → 𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 fbsspw ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐹 ⊆ 𝒫 𝐵 )
2 1 sselda ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑋𝐹 ) → 𝑋 ∈ 𝒫 𝐵 )
3 2 elpwid ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑋𝐹 ) → 𝑋𝐵 )