| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐹 ↔ 𝑦 ∈ 𝐹 ) ) |
| 2 |
1
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) ) ) |
| 3 |
2
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ) |
| 4 |
|
eleq1 |
⊢ ( 𝑥 = 𝑆 → ( 𝑥 ∈ 𝐹 ↔ 𝑆 ∈ 𝐹 ) ) |
| 5 |
4
|
anbi2d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ) ) ) |
| 6 |
5
|
imbi1d |
⊢ ( 𝑥 = 𝑆 → ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ) |
| 7 |
|
bi2.04 |
⊢ ( ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) |
| 8 |
|
ibar |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝑥 ∈ 𝐹 ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∈ 𝐹 ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) ) ) |
| 10 |
9
|
imbi1d |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) ) |
| 11 |
7 10
|
bitr4id |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ↔ ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) ) |
| 12 |
11
|
albidv |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) ) |
| 13 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) |
| 14 |
12 13
|
bitr4di |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ↔ ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) |
| 15 |
|
0nelfb |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ¬ ∅ ∈ 𝐹 ) |
| 16 |
|
eleq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) |
| 17 |
16
|
notbid |
⊢ ( 𝑦 = ∅ → ( ¬ 𝑦 ∈ 𝐹 ↔ ¬ ∅ ∈ 𝐹 ) ) |
| 18 |
15 17
|
syl5ibrcom |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝑦 = ∅ → ¬ 𝑦 ∈ 𝐹 ) ) |
| 19 |
18
|
necon2ad |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝑦 ∈ 𝐹 → 𝑦 ≠ ∅ ) ) |
| 20 |
19
|
imp |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ≠ ∅ ) |
| 21 |
|
ssn0 |
⊢ ( ( 𝑦 ⊆ ∩ 𝐹 ∧ 𝑦 ≠ ∅ ) → ∩ 𝐹 ≠ ∅ ) |
| 22 |
21
|
ex |
⊢ ( 𝑦 ⊆ ∩ 𝐹 → ( 𝑦 ≠ ∅ → ∩ 𝐹 ≠ ∅ ) ) |
| 23 |
20 22
|
syl5com |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑦 ⊆ ∩ 𝐹 → ∩ 𝐹 ≠ ∅ ) ) |
| 24 |
23
|
a1dd |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑦 ⊆ ∩ 𝐹 → ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≠ ∅ ) ) ) |
| 25 |
|
ssint |
⊢ ( 𝑦 ⊆ ∩ 𝐹 ↔ ∀ 𝑧 ∈ 𝐹 𝑦 ⊆ 𝑧 ) |
| 26 |
25
|
notbii |
⊢ ( ¬ 𝑦 ⊆ ∩ 𝐹 ↔ ¬ ∀ 𝑧 ∈ 𝐹 𝑦 ⊆ 𝑧 ) |
| 27 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝐹 ¬ 𝑦 ⊆ 𝑧 ↔ ¬ ∀ 𝑧 ∈ 𝐹 𝑦 ⊆ 𝑧 ) |
| 28 |
26 27
|
bitr4i |
⊢ ( ¬ 𝑦 ⊆ ∩ 𝐹 ↔ ∃ 𝑧 ∈ 𝐹 ¬ 𝑦 ⊆ 𝑧 ) |
| 29 |
|
fbasssin |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) |
| 30 |
|
nssinpss |
⊢ ( ¬ 𝑦 ⊆ 𝑧 ↔ ( 𝑦 ∩ 𝑧 ) ⊊ 𝑦 ) |
| 31 |
|
sspsstr |
⊢ ( ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ∧ ( 𝑦 ∩ 𝑧 ) ⊊ 𝑦 ) → 𝑥 ⊊ 𝑦 ) |
| 32 |
30 31
|
sylan2b |
⊢ ( ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ∧ ¬ 𝑦 ⊆ 𝑧 ) → 𝑥 ⊊ 𝑦 ) |
| 33 |
32
|
expcom |
⊢ ( ¬ 𝑦 ⊆ 𝑧 → ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) → 𝑥 ⊊ 𝑦 ) ) |
| 34 |
33
|
reximdv |
⊢ ( ¬ 𝑦 ⊆ 𝑧 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) ) |
| 35 |
29 34
|
syl5com |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) → ( ¬ 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) ) |
| 36 |
35
|
3expia |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑧 ∈ 𝐹 → ( ¬ 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) ) ) |
| 37 |
36
|
rexlimdv |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ∃ 𝑧 ∈ 𝐹 ¬ 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) ) |
| 38 |
28 37
|
biimtrid |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ¬ 𝑦 ⊆ ∩ 𝐹 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) ) |
| 39 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) → ∃ 𝑥 ∈ 𝐹 ( ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ∧ 𝑥 ⊊ 𝑦 ) ) |
| 40 |
|
id |
⊢ ( ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) |
| 41 |
40
|
imp |
⊢ ( ( ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ∧ 𝑥 ⊊ 𝑦 ) → ∩ 𝐹 ≠ ∅ ) |
| 42 |
41
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐹 ( ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ∧ 𝑥 ⊊ 𝑦 ) → ∩ 𝐹 ≠ ∅ ) |
| 43 |
39 42
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) → ∩ 𝐹 ≠ ∅ ) |
| 44 |
43
|
expcom |
⊢ ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 → ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≠ ∅ ) ) |
| 45 |
38 44
|
syl6 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ¬ 𝑦 ⊆ ∩ 𝐹 → ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≠ ∅ ) ) ) |
| 46 |
24 45
|
pm2.61d |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≠ ∅ ) ) |
| 47 |
14 46
|
sylbid |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) → ∩ 𝐹 ≠ ∅ ) ) |
| 48 |
47
|
com12 |
⊢ ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) |
| 49 |
48
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ) |
| 50 |
3 6 49
|
findcard3 |
⊢ ( 𝑆 ∈ Fin → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) |
| 51 |
50
|
com12 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ) → ( 𝑆 ∈ Fin → ∩ 𝐹 ≠ ∅ ) ) |
| 52 |
51
|
3impia |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ∩ 𝐹 ≠ ∅ ) |