Metamath Proof Explorer


Theorem fbfinnfr

Description: No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbfinnfr ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆𝐹𝑆 ∈ Fin ) → 𝐹 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑥 = 𝑦 → ( 𝑥𝐹𝑦𝐹 ) )
2 1 anbi2d ( 𝑥 = 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) ) )
3 2 imbi1d ( 𝑥 = 𝑦 → ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → 𝐹 ≠ ∅ ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → 𝐹 ≠ ∅ ) ) )
4 eleq1 ( 𝑥 = 𝑆 → ( 𝑥𝐹𝑆𝐹 ) )
5 4 anbi2d ( 𝑥 = 𝑆 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆𝐹 ) ) )
6 5 imbi1d ( 𝑥 = 𝑆 → ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → 𝐹 ≠ ∅ ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆𝐹 ) → 𝐹 ≠ ∅ ) ) )
7 bi2.04 ( ( 𝑥𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → 𝐹 ≠ ∅ ) ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → ( 𝑥𝑦 𝐹 ≠ ∅ ) ) )
8 ibar ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝑥𝐹 ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) ) )
9 8 adantr ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( 𝑥𝐹 ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) ) )
10 9 imbi1d ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( ( 𝑥𝐹 → ( 𝑥𝑦 𝐹 ≠ ∅ ) ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → ( 𝑥𝑦 𝐹 ≠ ∅ ) ) ) )
11 7 10 bitr4id ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( ( 𝑥𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → 𝐹 ≠ ∅ ) ) ↔ ( 𝑥𝐹 → ( 𝑥𝑦 𝐹 ≠ ∅ ) ) ) )
12 11 albidv ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( ∀ 𝑥 ( 𝑥𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → 𝐹 ≠ ∅ ) ) ↔ ∀ 𝑥 ( 𝑥𝐹 → ( 𝑥𝑦 𝐹 ≠ ∅ ) ) ) )
13 df-ral ( ∀ 𝑥𝐹 ( 𝑥𝑦 𝐹 ≠ ∅ ) ↔ ∀ 𝑥 ( 𝑥𝐹 → ( 𝑥𝑦 𝐹 ≠ ∅ ) ) )
14 12 13 bitr4di ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( ∀ 𝑥 ( 𝑥𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → 𝐹 ≠ ∅ ) ) ↔ ∀ 𝑥𝐹 ( 𝑥𝑦 𝐹 ≠ ∅ ) ) )
15 0nelfb ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ¬ ∅ ∈ 𝐹 )
16 eleq1 ( 𝑦 = ∅ → ( 𝑦𝐹 ↔ ∅ ∈ 𝐹 ) )
17 16 notbid ( 𝑦 = ∅ → ( ¬ 𝑦𝐹 ↔ ¬ ∅ ∈ 𝐹 ) )
18 15 17 syl5ibrcom ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝑦 = ∅ → ¬ 𝑦𝐹 ) )
19 18 necon2ad ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝑦𝐹𝑦 ≠ ∅ ) )
20 19 imp ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → 𝑦 ≠ ∅ )
21 ssn0 ( ( 𝑦 𝐹𝑦 ≠ ∅ ) → 𝐹 ≠ ∅ )
22 21 ex ( 𝑦 𝐹 → ( 𝑦 ≠ ∅ → 𝐹 ≠ ∅ ) )
23 20 22 syl5com ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( 𝑦 𝐹 𝐹 ≠ ∅ ) )
24 23 a1dd ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( 𝑦 𝐹 → ( ∀ 𝑥𝐹 ( 𝑥𝑦 𝐹 ≠ ∅ ) → 𝐹 ≠ ∅ ) ) )
25 ssint ( 𝑦 𝐹 ↔ ∀ 𝑧𝐹 𝑦𝑧 )
26 25 notbii ( ¬ 𝑦 𝐹 ↔ ¬ ∀ 𝑧𝐹 𝑦𝑧 )
27 rexnal ( ∃ 𝑧𝐹 ¬ 𝑦𝑧 ↔ ¬ ∀ 𝑧𝐹 𝑦𝑧 )
28 26 27 bitr4i ( ¬ 𝑦 𝐹 ↔ ∃ 𝑧𝐹 ¬ 𝑦𝑧 )
29 fbasssin ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹𝑧𝐹 ) → ∃ 𝑥𝐹 𝑥 ⊆ ( 𝑦𝑧 ) )
30 nssinpss ( ¬ 𝑦𝑧 ↔ ( 𝑦𝑧 ) ⊊ 𝑦 )
31 sspsstr ( ( 𝑥 ⊆ ( 𝑦𝑧 ) ∧ ( 𝑦𝑧 ) ⊊ 𝑦 ) → 𝑥𝑦 )
32 30 31 sylan2b ( ( 𝑥 ⊆ ( 𝑦𝑧 ) ∧ ¬ 𝑦𝑧 ) → 𝑥𝑦 )
33 32 expcom ( ¬ 𝑦𝑧 → ( 𝑥 ⊆ ( 𝑦𝑧 ) → 𝑥𝑦 ) )
34 33 reximdv ( ¬ 𝑦𝑧 → ( ∃ 𝑥𝐹 𝑥 ⊆ ( 𝑦𝑧 ) → ∃ 𝑥𝐹 𝑥𝑦 ) )
35 29 34 syl5com ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹𝑧𝐹 ) → ( ¬ 𝑦𝑧 → ∃ 𝑥𝐹 𝑥𝑦 ) )
36 35 3expia ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( 𝑧𝐹 → ( ¬ 𝑦𝑧 → ∃ 𝑥𝐹 𝑥𝑦 ) ) )
37 36 rexlimdv ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( ∃ 𝑧𝐹 ¬ 𝑦𝑧 → ∃ 𝑥𝐹 𝑥𝑦 ) )
38 28 37 syl5bi ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( ¬ 𝑦 𝐹 → ∃ 𝑥𝐹 𝑥𝑦 ) )
39 r19.29 ( ( ∀ 𝑥𝐹 ( 𝑥𝑦 𝐹 ≠ ∅ ) ∧ ∃ 𝑥𝐹 𝑥𝑦 ) → ∃ 𝑥𝐹 ( ( 𝑥𝑦 𝐹 ≠ ∅ ) ∧ 𝑥𝑦 ) )
40 id ( ( 𝑥𝑦 𝐹 ≠ ∅ ) → ( 𝑥𝑦 𝐹 ≠ ∅ ) )
41 40 imp ( ( ( 𝑥𝑦 𝐹 ≠ ∅ ) ∧ 𝑥𝑦 ) → 𝐹 ≠ ∅ )
42 41 rexlimivw ( ∃ 𝑥𝐹 ( ( 𝑥𝑦 𝐹 ≠ ∅ ) ∧ 𝑥𝑦 ) → 𝐹 ≠ ∅ )
43 39 42 syl ( ( ∀ 𝑥𝐹 ( 𝑥𝑦 𝐹 ≠ ∅ ) ∧ ∃ 𝑥𝐹 𝑥𝑦 ) → 𝐹 ≠ ∅ )
44 43 expcom ( ∃ 𝑥𝐹 𝑥𝑦 → ( ∀ 𝑥𝐹 ( 𝑥𝑦 𝐹 ≠ ∅ ) → 𝐹 ≠ ∅ ) )
45 38 44 syl6 ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( ¬ 𝑦 𝐹 → ( ∀ 𝑥𝐹 ( 𝑥𝑦 𝐹 ≠ ∅ ) → 𝐹 ≠ ∅ ) ) )
46 24 45 pm2.61d ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( ∀ 𝑥𝐹 ( 𝑥𝑦 𝐹 ≠ ∅ ) → 𝐹 ≠ ∅ ) )
47 14 46 sylbid ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → ( ∀ 𝑥 ( 𝑥𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → 𝐹 ≠ ∅ ) ) → 𝐹 ≠ ∅ ) )
48 47 com12 ( ∀ 𝑥 ( 𝑥𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → 𝐹 ≠ ∅ ) ) → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → 𝐹 ≠ ∅ ) )
49 48 a1i ( 𝑦 ∈ Fin → ( ∀ 𝑥 ( 𝑥𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥𝐹 ) → 𝐹 ≠ ∅ ) ) → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦𝐹 ) → 𝐹 ≠ ∅ ) ) )
50 3 6 49 findcard3 ( 𝑆 ∈ Fin → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆𝐹 ) → 𝐹 ≠ ∅ ) )
51 50 com12 ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆𝐹 ) → ( 𝑆 ∈ Fin → 𝐹 ≠ ∅ ) )
52 51 3impia ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆𝐹𝑆 ∈ Fin ) → 𝐹 ≠ ∅ )