Step |
Hyp |
Ref |
Expression |
1 |
|
fbflim.3 |
⊢ 𝐹 = ( 𝑋 filGen 𝐵 ) |
2 |
1
|
fbflim |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) ) |
3 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
5 |
|
simpr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
6 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
8 |
5 7
|
eleqtrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ∪ 𝐽 ) |
9 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
10 |
9
|
isneip |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ ∪ 𝐽 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( 𝑛 ⊆ ∪ 𝐽 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) ) ) |
11 |
4 8 10
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( 𝑛 ⊆ ∪ 𝐽 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) ) ) |
12 |
|
simpr |
⊢ ( ( 𝑛 ⊆ ∪ 𝐽 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) |
13 |
11 12
|
syl6bi |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) ) |
14 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ∃ 𝑦 ∈ 𝐽 ( ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) ) |
15 |
|
pm3.45 |
⊢ ( ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ( ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) ) |
16 |
15
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) |
17 |
|
sstr2 |
⊢ ( 𝑥 ⊆ 𝑦 → ( 𝑦 ⊆ 𝑛 → 𝑥 ⊆ 𝑛 ) ) |
18 |
17
|
com12 |
⊢ ( 𝑦 ⊆ 𝑛 → ( 𝑥 ⊆ 𝑦 → 𝑥 ⊆ 𝑛 ) ) |
19 |
18
|
reximdv |
⊢ ( 𝑦 ⊆ 𝑛 → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) |
20 |
19
|
impcom |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) |
21 |
16 20
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) |
22 |
21
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝐽 ( ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) |
23 |
14 22
|
syl |
⊢ ( ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) |
24 |
23
|
ex |
⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) |
25 |
13 24
|
syl9 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) ) |
26 |
25
|
ralrimdv |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) |
27 |
4
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ) → 𝐽 ∈ Top ) |
28 |
|
simprl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) |
29 |
|
simprr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ) → 𝐴 ∈ 𝑦 ) |
30 |
|
opnneip |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
31 |
27 28 29 30
|
syl3anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
32 |
|
sseq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑥 ⊆ 𝑛 ↔ 𝑥 ⊆ 𝑦 ) ) |
33 |
32
|
rexbidv |
⊢ ( 𝑛 = 𝑦 → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ↔ ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
34 |
33
|
rspcv |
⊢ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
35 |
31 34
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
36 |
35
|
expr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
37 |
36
|
com23 |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
38 |
37
|
ralrimdva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
39 |
26 38
|
impbid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) |
40 |
39
|
pm5.32da |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) ) |
41 |
2 40
|
bitrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) ) |