Metamath Proof Explorer


Theorem fbncp

Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbncp ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ¬ ( 𝐵𝐴 ) ∈ 𝐹 )

Proof

Step Hyp Ref Expression
1 0nelfb ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 )
2 1 adantr ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ¬ ∅ ∈ 𝐹 )
3 fbasssin ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴𝐹 ∧ ( 𝐵𝐴 ) ∈ 𝐹 ) → ∃ 𝑥𝐹 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵𝐴 ) ) )
4 disjdif ( 𝐴 ∩ ( 𝐵𝐴 ) ) = ∅
5 4 sseq2i ( 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵𝐴 ) ) ↔ 𝑥 ⊆ ∅ )
6 ss0 ( 𝑥 ⊆ ∅ → 𝑥 = ∅ )
7 5 6 sylbi ( 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵𝐴 ) ) → 𝑥 = ∅ )
8 eleq1 ( 𝑥 = ∅ → ( 𝑥𝐹 ↔ ∅ ∈ 𝐹 ) )
9 8 biimpac ( ( 𝑥𝐹𝑥 = ∅ ) → ∅ ∈ 𝐹 )
10 7 9 sylan2 ( ( 𝑥𝐹𝑥 ⊆ ( 𝐴 ∩ ( 𝐵𝐴 ) ) ) → ∅ ∈ 𝐹 )
11 10 rexlimiva ( ∃ 𝑥𝐹 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵𝐴 ) ) → ∅ ∈ 𝐹 )
12 3 11 syl ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴𝐹 ∧ ( 𝐵𝐴 ) ∈ 𝐹 ) → ∅ ∈ 𝐹 )
13 12 3expia ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( ( 𝐵𝐴 ) ∈ 𝐹 → ∅ ∈ 𝐹 ) )
14 2 13 mtod ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ¬ ( 𝐵𝐴 ) ∈ 𝐹 )