Step |
Hyp |
Ref |
Expression |
1 |
|
0nelfb |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ¬ ∅ ∈ 𝐹 ) |
3 |
|
fbasssin |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ ( 𝐵 ∖ 𝐴 ) ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ) |
4 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
5 |
4
|
sseq2i |
⊢ ( 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ⊆ ∅ ) |
6 |
|
ss0 |
⊢ ( 𝑥 ⊆ ∅ → 𝑥 = ∅ ) |
7 |
5 6
|
sylbi |
⊢ ( 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) → 𝑥 = ∅ ) |
8 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) |
9 |
8
|
biimpac |
⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 = ∅ ) → ∅ ∈ 𝐹 ) |
10 |
7 9
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ) → ∅ ∈ 𝐹 ) |
11 |
10
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) → ∅ ∈ 𝐹 ) |
12 |
3 11
|
syl |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ ( 𝐵 ∖ 𝐴 ) ∈ 𝐹 ) → ∅ ∈ 𝐹 ) |
13 |
12
|
3expia |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( ( 𝐵 ∖ 𝐴 ) ∈ 𝐹 → ∅ ∈ 𝐹 ) ) |
14 |
2 13
|
mtod |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ¬ ( 𝐵 ∖ 𝐴 ) ∈ 𝐹 ) |