| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nelfb | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ¬  ∅  ∈  𝐹 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ¬  ∅  ∈  𝐹 ) | 
						
							| 3 |  | fbasssin | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝐴  ∈  𝐹  ∧  ( 𝐵  ∖  𝐴 )  ∈  𝐹 )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) ) ) | 
						
							| 4 |  | disjdif | ⊢ ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  =  ∅ | 
						
							| 5 | 4 | sseq2i | ⊢ ( 𝑥  ⊆  ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  ↔  𝑥  ⊆  ∅ ) | 
						
							| 6 |  | ss0 | ⊢ ( 𝑥  ⊆  ∅  →  𝑥  =  ∅ ) | 
						
							| 7 | 5 6 | sylbi | ⊢ ( 𝑥  ⊆  ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  →  𝑥  =  ∅ ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ∈  𝐹  ↔  ∅  ∈  𝐹 ) ) | 
						
							| 9 | 8 | biimpac | ⊢ ( ( 𝑥  ∈  𝐹  ∧  𝑥  =  ∅ )  →  ∅  ∈  𝐹 ) | 
						
							| 10 | 7 9 | sylan2 | ⊢ ( ( 𝑥  ∈  𝐹  ∧  𝑥  ⊆  ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) ) )  →  ∅  ∈  𝐹 ) | 
						
							| 11 | 10 | rexlimiva | ⊢ ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  →  ∅  ∈  𝐹 ) | 
						
							| 12 | 3 11 | syl | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝐴  ∈  𝐹  ∧  ( 𝐵  ∖  𝐴 )  ∈  𝐹 )  →  ∅  ∈  𝐹 ) | 
						
							| 13 | 12 | 3expia | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ( ( 𝐵  ∖  𝐴 )  ∈  𝐹  →  ∅  ∈  𝐹 ) ) | 
						
							| 14 | 2 13 | mtod | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ¬  ( 𝐵  ∖  𝐴 )  ∈  𝐹 ) |