| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dffi2 | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( fi ‘ 𝐹 )  =  ∩  { 𝑧  ∣  ( 𝐹  ⊆  𝑧  ∧  ∀ 𝑢  ∈  𝑧 ∀ 𝑣  ∈  𝑧 ( 𝑢  ∩  𝑣 )  ∈  𝑧 ) } )  | 
						
						
							| 2 | 
							
								
							 | 
							sseq2 | 
							⊢ ( 𝑡  =  ( 𝑢  ∩  𝑣 )  →  ( 𝑥  ⊆  𝑡  ↔  𝑥  ⊆  ( 𝑢  ∩  𝑣 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							rexbidv | 
							⊢ ( 𝑡  =  ( 𝑢  ∩  𝑣 )  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡  ↔  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝑢  ∩  𝑣 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝑢  ∩  𝑣 )  ⊆  𝑢  | 
						
						
							| 5 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  𝑢  ∈  𝒫  ∪  𝐹 )  | 
						
						
							| 6 | 
							
								5
							 | 
							elpwid | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  𝑢  ⊆  ∪  𝐹 )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							sstrid | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  ( 𝑢  ∩  𝑣 )  ⊆  ∪  𝐹 )  | 
						
						
							| 8 | 
							
								
							 | 
							vex | 
							⊢ 𝑢  ∈  V  | 
						
						
							| 9 | 
							
								8
							 | 
							inex1 | 
							⊢ ( 𝑢  ∩  𝑣 )  ∈  V  | 
						
						
							| 10 | 
							
								9
							 | 
							elpw | 
							⊢ ( ( 𝑢  ∩  𝑣 )  ∈  𝒫  ∪  𝐹  ↔  ( 𝑢  ∩  𝑣 )  ⊆  ∪  𝐹 )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							sylibr | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  ( 𝑢  ∩  𝑣 )  ∈  𝒫  ∪  𝐹 )  | 
						
						
							| 12 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  →  𝑦  ∈  𝐹 )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 )  →  𝑧  ∈  𝐹 )  | 
						
						
							| 15 | 
							
								
							 | 
							fbasssin | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ∈  𝐹  ∧  𝑧  ∈  𝐹 )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝑦  ∩  𝑧 ) )  | 
						
						
							| 16 | 
							
								12 13 14 15
							 | 
							syl3an | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝑦  ∩  𝑧 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							ss2in | 
							⊢ ( ( 𝑦  ⊆  𝑢  ∧  𝑧  ⊆  𝑣 )  →  ( 𝑦  ∩  𝑧 )  ⊆  ( 𝑢  ∩  𝑣 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ad2ant2l | 
							⊢ ( ( ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  ( 𝑦  ∩  𝑧 )  ⊆  ( 𝑢  ∩  𝑣 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3adant1 | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  ( 𝑦  ∩  𝑧 )  ⊆  ( 𝑢  ∩  𝑣 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							sstr | 
							⊢ ( ( 𝑥  ⊆  ( 𝑦  ∩  𝑧 )  ∧  ( 𝑦  ∩  𝑧 )  ⊆  ( 𝑢  ∩  𝑣 ) )  →  𝑥  ⊆  ( 𝑢  ∩  𝑣 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							expcom | 
							⊢ ( ( 𝑦  ∩  𝑧 )  ⊆  ( 𝑢  ∩  𝑣 )  →  ( 𝑥  ⊆  ( 𝑦  ∩  𝑧 )  →  𝑥  ⊆  ( 𝑢  ∩  𝑣 ) ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							syl | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  ( 𝑥  ⊆  ( 𝑦  ∩  𝑧 )  →  𝑥  ⊆  ( 𝑢  ∩  𝑣 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							reximdv | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝑦  ∩  𝑧 )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝑢  ∩  𝑣 ) ) )  | 
						
						
							| 24 | 
							
								16 23
							 | 
							mpd | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝑢  ∩  𝑣 ) )  | 
						
						
							| 25 | 
							
								3 11 24
							 | 
							elrabd | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } )  | 
						
						
							| 26 | 
							
								25
							 | 
							3expa | 
							⊢ ( ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 ) )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  𝑣 ) )  →  ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } )  | 
						
						
							| 27 | 
							
								26
							 | 
							rexlimdvaa | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 ) )  →  ( ∃ 𝑧  ∈  𝐹 𝑧  ⊆  𝑣  →  ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ralrimivw | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 ) )  →  ∀ 𝑣  ∈  𝒫  ∪  𝐹 ( ∃ 𝑧  ∈  𝐹 𝑧  ⊆  𝑣  →  ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 29 | 
							
								
							 | 
							sseq2 | 
							⊢ ( 𝑡  =  𝑣  →  ( 𝑥  ⊆  𝑡  ↔  𝑥  ⊆  𝑣 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							rexbidv | 
							⊢ ( 𝑡  =  𝑣  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡  ↔  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑣 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ⊆  𝑣  ↔  𝑧  ⊆  𝑣 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑣  ↔  ∃ 𝑧  ∈  𝐹 𝑧  ⊆  𝑣 )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							bitrdi | 
							⊢ ( 𝑡  =  𝑣  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡  ↔  ∃ 𝑧  ∈  𝐹 𝑧  ⊆  𝑣 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ralrab | 
							⊢ ( ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ↔  ∀ 𝑣  ∈  𝒫  ∪  𝐹 ( ∃ 𝑧  ∈  𝐹 𝑧  ⊆  𝑣  →  ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 35 | 
							
								28 34
							 | 
							sylibr | 
							⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑦  ⊆  𝑢 ) )  →  ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } )  | 
						
						
							| 36 | 
							
								35
							 | 
							rexlimdvaa | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝒫  ∪  𝐹 )  →  ( ∃ 𝑦  ∈  𝐹 𝑦  ⊆  𝑢  →  ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ralrimiva | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ∀ 𝑢  ∈  𝒫  ∪  𝐹 ( ∃ 𝑦  ∈  𝐹 𝑦  ⊆  𝑢  →  ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 38 | 
							
								
							 | 
							sseq2 | 
							⊢ ( 𝑡  =  𝑢  →  ( 𝑥  ⊆  𝑡  ↔  𝑥  ⊆  𝑢 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							rexbidv | 
							⊢ ( 𝑡  =  𝑢  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡  ↔  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑢 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ⊆  𝑢  ↔  𝑦  ⊆  𝑢 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑢  ↔  ∃ 𝑦  ∈  𝐹 𝑦  ⊆  𝑢 )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							bitrdi | 
							⊢ ( 𝑡  =  𝑢  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡  ↔  ∃ 𝑦  ∈  𝐹 𝑦  ⊆  𝑢 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							ralrab | 
							⊢ ( ∀ 𝑢  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ↔  ∀ 𝑢  ∈  𝒫  ∪  𝐹 ( ∃ 𝑦  ∈  𝐹 𝑦  ⊆  𝑢  →  ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 44 | 
							
								37 43
							 | 
							sylibr | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ∀ 𝑢  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } )  | 
						
						
							| 45 | 
							
								
							 | 
							pwuni | 
							⊢ 𝐹  ⊆  𝒫  ∪  𝐹  | 
						
						
							| 46 | 
							
								
							 | 
							ssid | 
							⊢ 𝑡  ⊆  𝑡  | 
						
						
							| 47 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑥  =  𝑡  →  ( 𝑥  ⊆  𝑡  ↔  𝑡  ⊆  𝑡 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							rspcev | 
							⊢ ( ( 𝑡  ∈  𝐹  ∧  𝑡  ⊆  𝑡 )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							mpan2 | 
							⊢ ( 𝑡  ∈  𝐹  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 )  | 
						
						
							| 50 | 
							
								49
							 | 
							rgen | 
							⊢ ∀ 𝑡  ∈  𝐹 ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡  | 
						
						
							| 51 | 
							
								
							 | 
							ssrab | 
							⊢ ( 𝐹  ⊆  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ↔  ( 𝐹  ⊆  𝒫  ∪  𝐹  ∧  ∀ 𝑡  ∈  𝐹 ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 ) )  | 
						
						
							| 52 | 
							
								45 50 51
							 | 
							mpbir2an | 
							⊢ 𝐹  ⊆  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  | 
						
						
							| 53 | 
							
								44 52
							 | 
							jctil | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( 𝐹  ⊆  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ∧  ∀ 𝑢  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 54 | 
							
								
							 | 
							uniexg | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ∪  𝐹  ∈  V )  | 
						
						
							| 55 | 
							
								
							 | 
							pwexg | 
							⊢ ( ∪  𝐹  ∈  V  →  𝒫  ∪  𝐹  ∈  V )  | 
						
						
							| 56 | 
							
								
							 | 
							rabexg | 
							⊢ ( 𝒫  ∪  𝐹  ∈  V  →  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ∈  V )  | 
						
						
							| 57 | 
							
								
							 | 
							sseq2 | 
							⊢ ( 𝑧  =  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  →  ( 𝐹  ⊆  𝑧  ↔  𝐹  ⊆  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 58 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝑧  =  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  →  ( ( 𝑢  ∩  𝑣 )  ∈  𝑧  ↔  ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							raleqbi1dv | 
							⊢ ( 𝑧  =  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  →  ( ∀ 𝑣  ∈  𝑧 ( 𝑢  ∩  𝑣 )  ∈  𝑧  ↔  ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							raleqbi1dv | 
							⊢ ( 𝑧  =  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  →  ( ∀ 𝑢  ∈  𝑧 ∀ 𝑣  ∈  𝑧 ( 𝑢  ∩  𝑣 )  ∈  𝑧  ↔  ∀ 𝑢  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) )  | 
						
						
							| 61 | 
							
								57 60
							 | 
							anbi12d | 
							⊢ ( 𝑧  =  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  →  ( ( 𝐹  ⊆  𝑧  ∧  ∀ 𝑢  ∈  𝑧 ∀ 𝑣  ∈  𝑧 ( 𝑢  ∩  𝑣 )  ∈  𝑧 )  ↔  ( 𝐹  ⊆  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ∧  ∀ 𝑢  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							elabg | 
							⊢ ( { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ∈  V  →  ( { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ∈  { 𝑧  ∣  ( 𝐹  ⊆  𝑧  ∧  ∀ 𝑢  ∈  𝑧 ∀ 𝑣  ∈  𝑧 ( 𝑢  ∩  𝑣 )  ∈  𝑧 ) }  ↔  ( 𝐹  ⊆  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ∧  ∀ 𝑢  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) ) )  | 
						
						
							| 63 | 
							
								54 55 56 62
							 | 
							4syl | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ∈  { 𝑧  ∣  ( 𝐹  ⊆  𝑧  ∧  ∀ 𝑢  ∈  𝑧 ∀ 𝑣  ∈  𝑧 ( 𝑢  ∩  𝑣 )  ∈  𝑧 ) }  ↔  ( 𝐹  ⊆  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ∧  ∀ 𝑢  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ∀ 𝑣  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ( 𝑢  ∩  𝑣 )  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } ) ) )  | 
						
						
							| 64 | 
							
								53 63
							 | 
							mpbird | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ∈  { 𝑧  ∣  ( 𝐹  ⊆  𝑧  ∧  ∀ 𝑢  ∈  𝑧 ∀ 𝑣  ∈  𝑧 ( 𝑢  ∩  𝑣 )  ∈  𝑧 ) } )  | 
						
						
							| 65 | 
							
								
							 | 
							intss1 | 
							⊢ ( { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ∈  { 𝑧  ∣  ( 𝐹  ⊆  𝑧  ∧  ∀ 𝑢  ∈  𝑧 ∀ 𝑣  ∈  𝑧 ( 𝑢  ∩  𝑣 )  ∈  𝑧 ) }  →  ∩  { 𝑧  ∣  ( 𝐹  ⊆  𝑧  ∧  ∀ 𝑢  ∈  𝑧 ∀ 𝑣  ∈  𝑧 ( 𝑢  ∩  𝑣 )  ∈  𝑧 ) }  ⊆  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							syl | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ∩  { 𝑧  ∣  ( 𝐹  ⊆  𝑧  ∧  ∀ 𝑢  ∈  𝑧 ∀ 𝑣  ∈  𝑧 ( 𝑢  ∩  𝑣 )  ∈  𝑧 ) }  ⊆  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } )  | 
						
						
							| 67 | 
							
								1 66
							 | 
							eqsstrd | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( fi ‘ 𝐹 )  ⊆  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } )  | 
						
						
							| 68 | 
							
								67
							 | 
							sselda | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝐴  ∈  ( fi ‘ 𝐹 ) )  →  𝐴  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 } )  | 
						
						
							| 69 | 
							
								
							 | 
							sseq2 | 
							⊢ ( 𝑡  =  𝐴  →  ( 𝑥  ⊆  𝑡  ↔  𝑥  ⊆  𝐴 ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							rexbidv | 
							⊢ ( 𝑡  =  𝐴  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡  ↔  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝐴 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							elrab | 
							⊢ ( 𝐴  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  ↔  ( 𝐴  ∈  𝒫  ∪  𝐹  ∧  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝐴 ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							simprbi | 
							⊢ ( 𝐴  ∈  { 𝑡  ∈  𝒫  ∪  𝐹  ∣  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 }  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝐴 )  | 
						
						
							| 73 | 
							
								68 72
							 | 
							syl | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝐴  ∈  ( fi ‘ 𝐹 ) )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝐴 )  |