| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fbasne0 | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  𝐹  ≠  ∅ ) | 
						
							| 2 |  | n0 | ⊢ ( 𝐹  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝐹 ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  ∃ 𝑥 𝑥  ∈  𝐹 ) | 
						
							| 4 |  | ssv | ⊢ 𝑥  ⊆  V | 
						
							| 5 | 4 | jctr | ⊢ ( 𝑥  ∈  𝐹  →  ( 𝑥  ∈  𝐹  ∧  𝑥  ⊆  V ) ) | 
						
							| 6 | 5 | eximi | ⊢ ( ∃ 𝑥 𝑥  ∈  𝐹  →  ∃ 𝑥 ( 𝑥  ∈  𝐹  ∧  𝑥  ⊆  V ) ) | 
						
							| 7 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  V  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐹  ∧  𝑥  ⊆  V ) ) | 
						
							| 8 | 6 7 | sylibr | ⊢ ( ∃ 𝑥 𝑥  ∈  𝐹  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  V ) | 
						
							| 9 | 3 8 | syl | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  V ) | 
						
							| 10 |  | inteq | ⊢ ( 𝐴  =  ∅  →  ∩  𝐴  =  ∩  ∅ ) | 
						
							| 11 |  | int0 | ⊢ ∩  ∅  =  V | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ∩  𝐴  =  V ) | 
						
							| 13 | 12 | sseq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝑥  ⊆  ∩  𝐴  ↔  𝑥  ⊆  V ) ) | 
						
							| 14 | 13 | rexbidv | ⊢ ( 𝐴  =  ∅  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ∩  𝐴  ↔  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  V ) ) | 
						
							| 15 | 9 14 | syl5ibrcom | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  ( 𝐴  =  ∅  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ∩  𝐴 ) ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  𝐴  ⊆  𝐹  ∧  𝐴  ∈  Fin )  →  ( 𝐴  =  ∅  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ∩  𝐴 ) ) | 
						
							| 17 |  | simpl1 | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  𝐴  ⊆  𝐹  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  𝐹  ∈  ( fBas ‘ 𝐵 ) ) | 
						
							| 18 |  | simpl2 | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  𝐴  ⊆  𝐹  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  𝐴  ⊆  𝐹 ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  𝐴  ⊆  𝐹  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  𝐴  ≠  ∅ ) | 
						
							| 20 |  | simpl3 | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  𝐴  ⊆  𝐹  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  𝐴  ∈  Fin ) | 
						
							| 21 |  | elfir | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  ( 𝐴  ⊆  𝐹  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin ) )  →  ∩  𝐴  ∈  ( fi ‘ 𝐹 ) ) | 
						
							| 22 | 17 18 19 20 21 | syl13anc | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  𝐴  ⊆  𝐹  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  ∩  𝐴  ∈  ( fi ‘ 𝐹 ) ) | 
						
							| 23 |  | fbssfi | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  ∩  𝐴  ∈  ( fi ‘ 𝐹 ) )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ∩  𝐴 ) | 
						
							| 24 | 17 22 23 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  𝐴  ⊆  𝐹  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ∩  𝐴 ) | 
						
							| 25 | 24 | ex | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  𝐴  ⊆  𝐹  ∧  𝐴  ∈  Fin )  →  ( 𝐴  ≠  ∅  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ∩  𝐴 ) ) | 
						
							| 26 | 16 25 | pm2.61dne | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ∧  𝐴  ⊆  𝐹  ∧  𝐴  ∈  Fin )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ∩  𝐴 ) |