Metamath Proof Explorer


Theorem fbsspw

Description: A filter base on a set is a subset of the power set. (Contributed by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbsspw ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐹 ⊆ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 elfvdm ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐵 ∈ dom fBas )
2 isfbas ( 𝐵 ∈ dom fBas → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ≠ ∅ ) ) ) )
3 1 2 syl ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ≠ ∅ ) ) ) )
4 3 ibi ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ≠ ∅ ) ) )
5 4 simpld ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐹 ⊆ 𝒫 𝐵 )