Description: A filter base on a set is a subset of the power set. (Contributed by Stefan O'Rear, 28-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fbsspw | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐹 ⊆ 𝒫 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐵 ∈ dom fBas ) | |
2 | isfbas | ⊢ ( 𝐵 ∈ dom fBas → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
4 | 3 | ibi | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) |
5 | 4 | simpld | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐹 ⊆ 𝒫 𝐵 ) |