| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) |
| 2 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝑊 → 𝐹 Fn 𝐴 ) |
| 3 |
1 2
|
anim12ci |
⊢ ( ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴 ⟶ 𝑊 ) → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ) |
| 4 |
|
ffnfv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝑉 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ) |
| 5 |
3 4
|
sylibr |
⊢ ( ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴 ⟶ 𝑊 ) → 𝐹 : 𝐴 ⟶ 𝑉 ) |
| 6 |
|
simpl |
⊢ ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) → 𝑉 ⊆ 𝑊 ) |
| 7 |
6
|
anim1ci |
⊢ ( ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴 ⟶ 𝑉 ) → ( 𝐹 : 𝐴 ⟶ 𝑉 ∧ 𝑉 ⊆ 𝑊 ) ) |
| 8 |
|
fss |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑉 ∧ 𝑉 ⊆ 𝑊 ) → 𝐹 : 𝐴 ⟶ 𝑊 ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴 ⟶ 𝑉 ) → 𝐹 : 𝐴 ⟶ 𝑊 ) |
| 10 |
5 9
|
impbida |
⊢ ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) → ( 𝐹 : 𝐴 ⟶ 𝑊 ↔ 𝐹 : 𝐴 ⟶ 𝑉 ) ) |