| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fcfval | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 )  =  ( 𝐽  fClus  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐿 ) ) ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 )  ↔  𝐴  ∈  ( 𝐽  fClus  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐿 ) ) ) ) | 
						
							| 3 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 4 | 3 | fclselbas | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐿 ) )  →  𝐴  ∈  ∪  𝐽 ) | 
						
							| 5 | 2 4 | biimtrdi | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 )  →  𝐴  ∈  ∪  𝐽 ) ) | 
						
							| 6 | 5 | imp | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 ) )  →  𝐴  ∈  ∪  𝐽 ) | 
						
							| 7 |  | simpl1 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 8 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 10 | 6 9 | eleqtrrd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 ) )  →  𝐴  ∈  𝑋 ) |