Step |
Hyp |
Ref |
Expression |
1 |
|
fcfval |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
2 |
1
|
eleq2d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ↔ 𝐴 ∈ ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ) |
3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
4 |
3
|
fclselbas |
⊢ ( 𝐴 ∈ ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) → 𝐴 ∈ ∪ 𝐽 ) |
5 |
2 4
|
syl6bi |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) ) |
6 |
5
|
imp |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐴 ∈ ∪ 𝐽 ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
8 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝑋 = ∪ 𝐽 ) |
10 |
6 9
|
eleqtrrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐴 ∈ 𝑋 ) |