Step |
Hyp |
Ref |
Expression |
1 |
|
isfcf |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) ) |
2 |
|
simpll1 |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
4 |
2 3
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐽 ∈ Top ) |
5 |
|
simpr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
6 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
7 |
6
|
neii1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑛 ⊆ ∪ 𝐽 ) |
8 |
4 5 7
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑛 ⊆ ∪ 𝐽 ) |
9 |
6
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑛 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ⊆ 𝑛 ) |
10 |
4 8 9
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ⊆ 𝑛 ) |
11 |
|
simplr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ 𝑋 ) |
12 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
13 |
2 12
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑋 = ∪ 𝐽 ) |
14 |
11 13
|
eleqtrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ ∪ 𝐽 ) |
15 |
14
|
snssd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → { 𝐴 } ⊆ ∪ 𝐽 ) |
16 |
6
|
neiint |
⊢ ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑛 ⊆ ∪ 𝐽 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) |
17 |
4 15 8 16
|
syl3anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) |
18 |
5 17
|
mpbid |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) |
19 |
|
snssg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) |
20 |
11 19
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) |
21 |
18 20
|
mpbird |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) |
22 |
6
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑛 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∈ 𝐽 ) |
23 |
4 8 22
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∈ 𝐽 ) |
24 |
|
eleq2 |
⊢ ( 𝑜 = ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ( 𝐴 ∈ 𝑜 ↔ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) |
25 |
|
ineq1 |
⊢ ( 𝑜 = ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) = ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ) |
26 |
25
|
neeq1d |
⊢ ( 𝑜 = ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ( ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
27 |
26
|
ralbidv |
⊢ ( 𝑜 = ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ( ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
28 |
24 27
|
imbi12d |
⊢ ( 𝑜 = ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ( ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ↔ ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
29 |
28
|
rspcv |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∈ 𝐽 → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
30 |
23 29
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
31 |
21 30
|
mpid |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
32 |
|
ssrin |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ⊆ 𝑛 → ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ⊆ ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ) |
33 |
|
ssn0 |
⊢ ( ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ⊆ ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ∧ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) |
34 |
33
|
ex |
⊢ ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ⊆ ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) → ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
35 |
32 34
|
syl |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ⊆ 𝑛 → ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
36 |
35
|
ralimdv |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ⊆ 𝑛 → ( ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
37 |
10 31 36
|
sylsyld |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
38 |
37
|
ralrimdva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
39 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
40 |
39 3
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
41 |
|
opnneip |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) → 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
42 |
41
|
3expb |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
43 |
40 42
|
sylan |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
44 |
|
ineq1 |
⊢ ( 𝑛 = 𝑜 → ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) = ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ) |
45 |
44
|
neeq1d |
⊢ ( 𝑛 = 𝑜 → ( ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
46 |
45
|
ralbidv |
⊢ ( 𝑛 = 𝑜 → ( ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
47 |
46
|
rspcv |
⊢ ( 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
48 |
43 47
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
49 |
48
|
expr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑜 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
50 |
49
|
com23 |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
51 |
50
|
ralrimdva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
52 |
38 51
|
impbid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
53 |
52
|
pm5.32da |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
54 |
1 53
|
bitrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |