| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfcf | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) ) ) | 
						
							| 2 |  | simpll1 | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝐽  ∈  Top ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 6 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 7 | 6 | neii1 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝑛  ⊆  ∪  𝐽 ) | 
						
							| 8 | 4 5 7 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝑛  ⊆  ∪  𝐽 ) | 
						
							| 9 | 6 | ntrss2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑛  ⊆  ∪  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ⊆  𝑛 ) | 
						
							| 10 | 4 8 9 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ⊆  𝑛 ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 12 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 13 | 2 12 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 14 | 11 13 | eleqtrd | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝐴  ∈  ∪  𝐽 ) | 
						
							| 15 | 14 | snssd | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  { 𝐴 }  ⊆  ∪  𝐽 ) | 
						
							| 16 | 6 | neiint | ⊢ ( ( 𝐽  ∈  Top  ∧  { 𝐴 }  ⊆  ∪  𝐽  ∧  𝑛  ⊆  ∪  𝐽 )  →  ( 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) | 
						
							| 17 | 4 15 8 16 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) | 
						
							| 18 | 5 17 | mpbid | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) | 
						
							| 19 |  | snssg | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) | 
						
							| 20 | 11 19 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) | 
						
							| 21 | 18 20 | mpbird | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) | 
						
							| 22 | 6 | ntropn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑛  ⊆  ∪  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∈  𝐽 ) | 
						
							| 23 | 4 8 22 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∈  𝐽 ) | 
						
							| 24 |  | eleq2 | ⊢ ( 𝑜  =  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  →  ( 𝐴  ∈  𝑜  ↔  𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) | 
						
							| 25 |  | ineq1 | ⊢ ( 𝑜  =  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  →  ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  =  ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) ) ) | 
						
							| 26 | 25 | neeq1d | ⊢ ( 𝑜  =  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  →  ( ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  ↔  ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 27 | 26 | ralbidv | ⊢ ( 𝑜  =  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  →  ( ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  ↔  ∀ 𝑠  ∈  𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 28 | 24 27 | imbi12d | ⊢ ( 𝑜  =  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  →  ( ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ )  ↔  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  →  ∀ 𝑠  ∈  𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) ) | 
						
							| 29 | 28 | rspcv | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∈  𝐽  →  ( ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ )  →  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  →  ∀ 𝑠  ∈  𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) ) | 
						
							| 30 | 23 29 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ )  →  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑛 )  →  ∀ 𝑠  ∈  𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) ) | 
						
							| 31 | 21 30 | mpid | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ )  →  ∀ 𝑠  ∈  𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 32 |  | ssrin | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ⊆  𝑛  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ⊆  ( 𝑛  ∩  ( 𝐹  “  𝑠 ) ) ) | 
						
							| 33 |  | ssn0 | ⊢ ( ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ⊆  ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ∧  ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ )  →  ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) | 
						
							| 34 | 33 | ex | ⊢ ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ⊆  ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  →  ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 35 | 32 34 | syl | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ⊆  𝑛  →  ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 36 | 35 | ralimdv | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ⊆  𝑛  →  ( ∀ 𝑠  ∈  𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 )  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 37 | 10 31 36 | sylsyld | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ )  →  ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 38 | 37 | ralrimdva | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ )  →  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 39 |  | simpl1 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 40 | 39 3 | syl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 41 |  | opnneip | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜 )  →  𝑜  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 42 | 41 | 3expb | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜 ) )  →  𝑜  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 43 | 40 42 | sylan | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜 ) )  →  𝑜  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 44 |  | ineq1 | ⊢ ( 𝑛  =  𝑜  →  ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  =  ( 𝑜  ∩  ( 𝐹  “  𝑠 ) ) ) | 
						
							| 45 | 44 | neeq1d | ⊢ ( 𝑛  =  𝑜  →  ( ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  ↔  ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 46 | 45 | ralbidv | ⊢ ( 𝑛  =  𝑜  →  ( ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  ↔  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 47 | 46 | rspcv | ⊢ ( 𝑜  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 48 | 43 47 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜 ) )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 49 | 48 | expr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑜  ∈  𝐽 )  →  ( 𝐴  ∈  𝑜  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) ) | 
						
							| 50 | 49 | com23 | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑜  ∈  𝐽 )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) ) | 
						
							| 51 | 50 | ralrimdva | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) ) | 
						
							| 52 | 38 51 | impbid | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ )  ↔  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 53 | 52 | pm5.32da | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐿 ( 𝑜  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) ) | 
						
							| 54 | 1 53 | bitrd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) ) |