| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fcfnei | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) ) | 
						
							| 2 |  | ineq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  =  ( 𝑁  ∩  ( 𝐹  “  𝑠 ) ) ) | 
						
							| 3 | 2 | neeq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  ↔  ( 𝑁  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ ) ) | 
						
							| 4 |  | imaeq2 | ⊢ ( 𝑠  =  𝑆  →  ( 𝐹  “  𝑠 )  =  ( 𝐹  “  𝑆 ) ) | 
						
							| 5 | 4 | ineq2d | ⊢ ( 𝑠  =  𝑆  →  ( 𝑁  ∩  ( 𝐹  “  𝑠 ) )  =  ( 𝑁  ∩  ( 𝐹  “  𝑆 ) ) ) | 
						
							| 6 | 5 | neeq1d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑁  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  ↔  ( 𝑁  ∩  ( 𝐹  “  𝑆 ) )  ≠  ∅ ) ) | 
						
							| 7 | 3 6 | rspc2v | ⊢ ( ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐿 )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ( 𝑁  ∩  ( 𝐹  “  𝑆 ) )  ≠  ∅ ) ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  →  ( 𝑆  ∈  𝐿  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ( 𝑁  ∩  ( 𝐹  “  𝑆 ) )  ≠  ∅ ) ) ) | 
						
							| 9 | 8 | com3r | ⊢ ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅  →  ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  →  ( 𝑆  ∈  𝐿  →  ( 𝑁  ∩  ( 𝐹  “  𝑆 ) )  ≠  ∅ ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐿 ( 𝑛  ∩  ( 𝐹  “  𝑠 ) )  ≠  ∅ )  →  ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  →  ( 𝑆  ∈  𝐿  →  ( 𝑁  ∩  ( 𝐹  “  𝑆 ) )  ≠  ∅ ) ) ) | 
						
							| 11 | 1 10 | biimtrdi | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 )  →  ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  →  ( 𝑆  ∈  𝐿  →  ( 𝑁  ∩  ( 𝐹  “  𝑆 ) )  ≠  ∅ ) ) ) ) | 
						
							| 12 | 11 | 3imp2 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ( 𝐴  ∈  ( ( 𝐽  fClusf  𝐿 ) ‘ 𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐿 ) )  →  ( 𝑁  ∩  ( 𝐹  “  𝑆 ) )  ≠  ∅ ) |