Step |
Hyp |
Ref |
Expression |
1 |
|
fcfnei |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
2 |
|
ineq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) = ( 𝑁 ∩ ( 𝐹 “ 𝑠 ) ) ) |
3 |
2
|
neeq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ( 𝑁 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
4 |
|
imaeq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝐹 “ 𝑠 ) = ( 𝐹 “ 𝑆 ) ) |
5 |
4
|
ineq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑁 ∩ ( 𝐹 “ 𝑠 ) ) = ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ) |
6 |
5
|
neeq1d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑁 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) |
7 |
3 6
|
rspc2v |
⊢ ( ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐿 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) |
8 |
7
|
ex |
⊢ ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝑆 ∈ 𝐿 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) ) |
9 |
8
|
com3r |
⊢ ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝑆 ∈ 𝐿 → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝑆 ∈ 𝐿 → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) ) |
11 |
1 10
|
syl6bi |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝑆 ∈ 𝐿 → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) ) ) |
12 |
11
|
3imp2 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐿 ) ) → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) |