Step |
Hyp |
Ref |
Expression |
1 |
|
df-fcf |
⊢ fClusf = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → fClusf = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) ) ) |
3 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → 𝑗 = 𝐽 ) |
4 |
3
|
unieqd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ∪ 𝑗 = ∪ 𝐽 ) |
5 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → 𝑋 = ∪ 𝐽 ) |
7 |
4 6
|
eqtr4d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ∪ 𝑗 = 𝑋 ) |
8 |
|
unieq |
⊢ ( 𝑓 = 𝐿 → ∪ 𝑓 = ∪ 𝐿 ) |
9 |
8
|
ad2antll |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ∪ 𝑓 = ∪ 𝐿 ) |
10 |
|
filunibas |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → ∪ 𝐿 = 𝑌 ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ∪ 𝐿 = 𝑌 ) |
12 |
9 11
|
eqtrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ∪ 𝑓 = 𝑌 ) |
13 |
7 12
|
oveq12d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ( ∪ 𝑗 ↑m ∪ 𝑓 ) = ( 𝑋 ↑m 𝑌 ) ) |
14 |
7
|
oveq1d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ( ∪ 𝑗 FilMap 𝑔 ) = ( 𝑋 FilMap 𝑔 ) ) |
15 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → 𝑓 = 𝐿 ) |
16 |
14 15
|
fveq12d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) = ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) |
17 |
3 16
|
oveq12d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) |
18 |
13 17
|
mpteq12dv |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) = ( 𝑔 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) ) |
19 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
20 |
19
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → 𝐽 ∈ Top ) |
21 |
|
fvssunirn |
⊢ ( Fil ‘ 𝑌 ) ⊆ ∪ ran Fil |
22 |
21
|
sseli |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝐿 ∈ ∪ ran Fil ) |
23 |
22
|
adantl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → 𝐿 ∈ ∪ ran Fil ) |
24 |
|
ovex |
⊢ ( 𝑋 ↑m 𝑌 ) ∈ V |
25 |
24
|
mptex |
⊢ ( 𝑔 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) ∈ V |
26 |
25
|
a1i |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝑔 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) ∈ V ) |
27 |
2 18 20 23 26
|
ovmpod |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fClusf 𝐿 ) = ( 𝑔 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) ) |
28 |
27
|
3adant3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐽 fClusf 𝐿 ) = ( 𝑔 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) ) |
29 |
|
simpr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑔 = 𝐹 ) → 𝑔 = 𝐹 ) |
30 |
29
|
oveq2d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑔 = 𝐹 ) → ( 𝑋 FilMap 𝑔 ) = ( 𝑋 FilMap 𝐹 ) ) |
31 |
30
|
fveq1d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑔 = 𝐹 ) → ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) |
32 |
31
|
oveq2d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑔 = 𝐹 ) → ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
33 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
34 |
|
filtop |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ 𝐿 ) |
35 |
|
elmapg |
⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐿 ) → ( 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) ↔ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
36 |
33 34 35
|
syl2an |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) ↔ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
37 |
36
|
biimp3ar |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) ) |
38 |
|
ovexd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ∈ V ) |
39 |
28 32 37 38
|
fvmptd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |