| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climrel |
⊢ Rel ⇝ |
| 2 |
|
climuni |
⊢ ( ( 𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧 ) → 𝑦 = 𝑧 ) |
| 3 |
2
|
ax-gen |
⊢ ∀ 𝑧 ( ( 𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧 ) → 𝑦 = 𝑧 ) |
| 4 |
3
|
ax-gen |
⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧 ) → 𝑦 = 𝑧 ) |
| 5 |
4
|
ax-gen |
⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧 ) → 𝑦 = 𝑧 ) |
| 6 |
|
dffun2 |
⊢ ( Fun ⇝ ↔ ( Rel ⇝ ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 7 |
1 5 6
|
mpbir2an |
⊢ Fun ⇝ |
| 8 |
|
funfn |
⊢ ( Fun ⇝ ↔ ⇝ Fn dom ⇝ ) |
| 9 |
7 8
|
mpbi |
⊢ ⇝ Fn dom ⇝ |
| 10 |
|
vex |
⊢ 𝑦 ∈ V |
| 11 |
10
|
elrn |
⊢ ( 𝑦 ∈ ran ⇝ ↔ ∃ 𝑥 𝑥 ⇝ 𝑦 ) |
| 12 |
|
climcl |
⊢ ( 𝑥 ⇝ 𝑦 → 𝑦 ∈ ℂ ) |
| 13 |
12
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ⇝ 𝑦 → 𝑦 ∈ ℂ ) |
| 14 |
11 13
|
sylbi |
⊢ ( 𝑦 ∈ ran ⇝ → 𝑦 ∈ ℂ ) |
| 15 |
14
|
ssriv |
⊢ ran ⇝ ⊆ ℂ |
| 16 |
|
df-f |
⊢ ( ⇝ : dom ⇝ ⟶ ℂ ↔ ( ⇝ Fn dom ⇝ ∧ ran ⇝ ⊆ ℂ ) ) |
| 17 |
9 15 16
|
mpbir2an |
⊢ ⇝ : dom ⇝ ⟶ ℂ |