Metamath Proof Explorer


Theorem fclim

Description: The limit relation is function-like, and with range the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion fclim ⇝ : dom ⇝ ⟶ ℂ

Proof

Step Hyp Ref Expression
1 climrel Rel ⇝
2 climuni ( ( 𝑥𝑦𝑥𝑧 ) → 𝑦 = 𝑧 )
3 2 ax-gen 𝑧 ( ( 𝑥𝑦𝑥𝑧 ) → 𝑦 = 𝑧 )
4 3 ax-gen 𝑦𝑧 ( ( 𝑥𝑦𝑥𝑧 ) → 𝑦 = 𝑧 )
5 4 ax-gen 𝑥𝑦𝑧 ( ( 𝑥𝑦𝑥𝑧 ) → 𝑦 = 𝑧 )
6 dffun2 ( Fun ⇝ ↔ ( Rel ⇝ ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑦𝑥𝑧 ) → 𝑦 = 𝑧 ) ) )
7 1 5 6 mpbir2an Fun ⇝
8 funfn ( Fun ⇝ ↔ ⇝ Fn dom ⇝ )
9 7 8 mpbi ⇝ Fn dom ⇝
10 vex 𝑦 ∈ V
11 10 elrn ( 𝑦 ∈ ran ⇝ ↔ ∃ 𝑥 𝑥𝑦 )
12 climcl ( 𝑥𝑦𝑦 ∈ ℂ )
13 12 exlimiv ( ∃ 𝑥 𝑥𝑦𝑦 ∈ ℂ )
14 11 13 sylbi ( 𝑦 ∈ ran ⇝ → 𝑦 ∈ ℂ )
15 14 ssriv ran ⇝ ⊆ ℂ
16 df-f ( ⇝ : dom ⇝ ⟶ ℂ ↔ ( ⇝ Fn dom ⇝ ∧ ran ⇝ ⊆ ℂ ) )
17 9 15 16 mpbir2an ⇝ : dom ⇝ ⟶ ℂ