Step |
Hyp |
Ref |
Expression |
1 |
|
flimfnfcls.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
3 |
1
|
fclsval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝑋 , ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) , ∅ ) ) |
4 |
|
eqid |
⊢ 𝑋 = 𝑋 |
5 |
4
|
iftruei |
⊢ if ( 𝑋 = 𝑋 , ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) , ∅ ) = ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) |
6 |
3 5
|
eqtrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) = ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
7 |
2 6
|
sylan |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) = ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
8 |
|
fvex |
⊢ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ V |
9 |
8
|
dfiin3 |
⊢ ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∩ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
10 |
7 9
|
eqtrdi |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) = ∩ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) |
11 |
|
simpl |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐽 ∈ Comp ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝐽 ∈ Comp ) |
13 |
12 2
|
syl |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝐽 ∈ Top ) |
14 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ 𝑋 ) |
15 |
14
|
adantll |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ 𝑋 ) |
16 |
1
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
17 |
13 15 16
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
18 |
17
|
fmpttd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) : 𝐹 ⟶ ( Clsd ‘ 𝐽 ) ) |
19 |
18
|
frnd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( Clsd ‘ 𝐽 ) ) |
20 |
|
simpr |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
22 |
|
simpr |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ 𝐹 ) |
23 |
1
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑋 ) |
24 |
13 15 23
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑋 ) |
25 |
1
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → 𝑥 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
26 |
13 15 25
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
27 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑋 ∧ 𝑥 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ 𝐹 ) |
28 |
21 22 24 26 27
|
syl13anc |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ 𝐹 ) |
29 |
28
|
fmpttd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) : 𝐹 ⟶ 𝐹 ) |
30 |
29
|
frnd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ 𝐹 ) |
31 |
|
fiss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ 𝐹 ) → ( fi ‘ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ⊆ ( fi ‘ 𝐹 ) ) |
32 |
20 30 31
|
syl2anc |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( fi ‘ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ⊆ ( fi ‘ 𝐹 ) ) |
33 |
|
filfi |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( fi ‘ 𝐹 ) = 𝐹 ) |
34 |
20 33
|
syl |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( fi ‘ 𝐹 ) = 𝐹 ) |
35 |
32 34
|
sseqtrd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( fi ‘ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ⊆ 𝐹 ) |
36 |
|
0nelfil |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) |
37 |
20 36
|
syl |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ¬ ∅ ∈ 𝐹 ) |
38 |
35 37
|
ssneldd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ¬ ∅ ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ) |
39 |
|
cmpfii |
⊢ ( ( 𝐽 ∈ Comp ∧ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( Clsd ‘ 𝐽 ) ∧ ¬ ∅ ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ) → ∩ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ≠ ∅ ) |
40 |
11 19 38 39
|
syl3anc |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ∩ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ≠ ∅ ) |
41 |
10 40
|
eqnetrd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) ≠ ∅ ) |