| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fclselbas.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | fclsfil | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 3 |  | fclstopon | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  𝐹  ∈  ( Fil ‘ 𝑋 ) ) ) | 
						
							| 4 | 2 3 | mpbird | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 5 |  | fclsopn | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) ) | 
						
							| 6 | 4 2 5 | syl2anc | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) ) | 
						
							| 7 | 6 | ibi | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐴  ∈  𝑋 ) |