| Step | Hyp | Ref | Expression | 
						
							| 1 |  | filsspw | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 3 |  | fclstop | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐽  ∈  Top ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝐽  ∈  Top ) | 
						
							| 5 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 6 | 5 | neisspw | ⊢ ( 𝐽  ∈  Top  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  𝒫  ∪  𝐽 ) | 
						
							| 7 | 4 6 | syl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  𝒫  ∪  𝐽 ) | 
						
							| 8 |  | filunibas | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ∪  𝐹  =  𝑋 ) | 
						
							| 9 | 5 | fclsfil | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) ) | 
						
							| 10 |  | filunibas | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐽 )  →  ∪  𝐹  =  ∪  𝐽 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ∪  𝐹  =  ∪  𝐽 ) | 
						
							| 12 | 8 11 | sylan9req | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 13 | 12 | pweqd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝒫  𝑋  =  𝒫  ∪  𝐽 ) | 
						
							| 14 | 7 13 | sseqtrrd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  𝒫  𝑋 ) | 
						
							| 15 | 2 14 | unssd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ⊆  𝒫  𝑋 ) | 
						
							| 16 |  | ssun1 | ⊢ 𝐹  ⊆  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 17 |  | filn0 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ≠  ∅ ) | 
						
							| 18 |  | ssn0 | ⊢ ( ( 𝐹  ⊆  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ∧  𝐹  ≠  ∅ )  →  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ≠  ∅ ) | 
						
							| 19 | 16 17 18 | sylancr | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ≠  ∅ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ≠  ∅ ) | 
						
							| 21 |  | incom | ⊢ ( 𝑦  ∩  𝑥 )  =  ( 𝑥  ∩  𝑦 ) | 
						
							| 22 |  | fclsneii | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑥  ∈  𝐹 )  →  ( 𝑦  ∩  𝑥 )  ≠  ∅ ) | 
						
							| 23 | 21 22 | eqnetrrid | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑥  ∈  𝐹 )  →  ( 𝑥  ∩  𝑦 )  ≠  ∅ ) | 
						
							| 24 | 23 | 3com23 | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑥  ∈  𝐹  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( 𝑥  ∩  𝑦 )  ≠  ∅ ) | 
						
							| 25 | 24 | 3expb | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  →  ( 𝑥  ∩  𝑦 )  ≠  ∅ ) | 
						
							| 26 | 25 | adantll | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  →  ( 𝑥  ∩  𝑦 )  ≠  ∅ ) | 
						
							| 27 | 26 | ralrimivva | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ∀ 𝑥  ∈  𝐹 ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ( 𝑥  ∩  𝑦 )  ≠  ∅ ) | 
						
							| 28 |  | filfbas | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 30 |  | istopon | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝐽 ) ) | 
						
							| 31 | 4 12 30 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 32 | 5 | fclselbas | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐴  ∈  ∪  𝐽 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝐴  ∈  ∪  𝐽 ) | 
						
							| 34 | 33 12 | eleqtrrd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 35 | 34 | snssd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 36 |  | snnzg | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  { 𝐴 }  ≠  ∅ ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  { 𝐴 }  ≠  ∅ ) | 
						
							| 38 |  | neifil | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  { 𝐴 }  ⊆  𝑋  ∧  { 𝐴 }  ≠  ∅ )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 39 | 31 35 37 38 | syl3anc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 40 |  | filfbas | ⊢ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  ( Fil ‘ 𝑋 )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 42 |  | fbunfip | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  ( fBas ‘ 𝑋 ) )  →  ( ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  ↔  ∀ 𝑥  ∈  𝐹 ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ( 𝑥  ∩  𝑦 )  ≠  ∅ ) ) | 
						
							| 43 | 29 41 42 | syl2anc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  ↔  ∀ 𝑥  ∈  𝐹 ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ( 𝑥  ∩  𝑦 )  ≠  ∅ ) ) | 
						
							| 44 | 27 43 | mpbird | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) | 
						
							| 45 |  | filtop | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐹 ) | 
						
							| 46 |  | fsubbas | ⊢ ( 𝑋  ∈  𝐹  →  ( ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  ∈  ( fBas ‘ 𝑋 )  ↔  ( ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ⊆  𝒫  𝑋  ∧  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ≠  ∅  ∧  ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  ∈  ( fBas ‘ 𝑋 )  ↔  ( ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ⊆  𝒫  𝑋  ∧  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ≠  ∅  ∧  ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  ∈  ( fBas ‘ 𝑋 )  ↔  ( ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ⊆  𝒫  𝑋  ∧  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ≠  ∅  ∧  ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) | 
						
							| 49 | 15 20 44 48 | mpbir3and | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 50 |  | fgcl | ⊢ ( ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 52 |  | fvex | ⊢ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  V | 
						
							| 53 |  | unexg | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  V )  →  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ∈  V ) | 
						
							| 54 | 52 53 | mpan2 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ∈  V ) | 
						
							| 55 |  | ssfii | ⊢ ( ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ∈  V  →  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ⊆  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ⊆  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ⊆  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) | 
						
							| 58 | 57 | unssad | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝐹  ⊆  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) | 
						
							| 59 |  | ssfg | ⊢ ( ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  ∈  ( fBas ‘ 𝑋 )  →  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) | 
						
							| 60 | 49 59 | syl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) | 
						
							| 61 | 58 60 | sstrd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) | 
						
							| 62 | 57 | unssbd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) | 
						
							| 63 | 62 60 | sstrd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) | 
						
							| 64 |  | elflim | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) )  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fLim  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) )  ↔  ( 𝐴  ∈  𝑋  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) | 
						
							| 65 | 31 51 64 | syl2anc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( 𝐴  ∈  ( 𝐽  fLim  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) )  ↔  ( 𝐴  ∈  𝑋  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) | 
						
							| 66 | 34 63 65 | mpbir2and | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝐴  ∈  ( 𝐽  fLim  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) | 
						
							| 67 |  | sseq2 | ⊢ ( 𝑔  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) )  →  ( 𝐹  ⊆  𝑔  ↔  𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) | 
						
							| 68 |  | oveq2 | ⊢ ( 𝑔  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) )  →  ( 𝐽  fLim  𝑔 )  =  ( 𝐽  fLim  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) | 
						
							| 69 | 68 | eleq2d | ⊢ ( 𝑔  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) )  →  ( 𝐴  ∈  ( 𝐽  fLim  𝑔 )  ↔  𝐴  ∈  ( 𝐽  fLim  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) | 
						
							| 70 | 67 69 | anbi12d | ⊢ ( 𝑔  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) )  →  ( ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) )  ↔  ( 𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) )  ∧  𝐴  ∈  ( 𝐽  fLim  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) ) | 
						
							| 71 | 70 | rspcev | ⊢ ( ( ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) )  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) )  ∧  𝐴  ∈  ( 𝐽  fLim  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) )  →  ∃ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) | 
						
							| 72 | 51 61 66 71 | syl12anc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ∃ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) | 
						
							| 73 | 72 | ex | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ∃ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) ) | 
						
							| 74 |  | simprl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑔  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) )  →  𝑔  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 75 |  | simprrr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑔  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) )  →  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) | 
						
							| 76 |  | flimtopon | ⊢ ( 𝐴  ∈  ( 𝐽  fLim  𝑔 )  →  ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  𝑔  ∈  ( Fil ‘ 𝑋 ) ) ) | 
						
							| 77 | 75 76 | syl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑔  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) )  →  ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  𝑔  ∈  ( Fil ‘ 𝑋 ) ) ) | 
						
							| 78 | 74 77 | mpbird | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑔  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 79 |  | simpl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑔  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 80 |  | simprrl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑔  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) )  →  𝐹  ⊆  𝑔 ) | 
						
							| 81 |  | fclsss2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑔 )  →  ( 𝐽  fClus  𝑔 )  ⊆  ( 𝐽  fClus  𝐹 ) ) | 
						
							| 82 | 78 79 80 81 | syl3anc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑔  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) )  →  ( 𝐽  fClus  𝑔 )  ⊆  ( 𝐽  fClus  𝐹 ) ) | 
						
							| 83 |  | flimfcls | ⊢ ( 𝐽  fLim  𝑔 )  ⊆  ( 𝐽  fClus  𝑔 ) | 
						
							| 84 | 83 75 | sselid | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑔  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) )  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) ) | 
						
							| 85 | 82 84 | sseldd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑔  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) )  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) ) | 
						
							| 86 | 85 | rexlimdvaa | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ∃ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) )  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) ) ) | 
						
							| 87 | 73 86 | impbid | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ∃ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  ∧  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) ) ) |