| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 2 | 1 | fclselbas | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐴  ∈  ∪  𝐽 ) | 
						
							| 3 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  𝑋  ↔  𝐴  ∈  ∪  𝐽 ) ) | 
						
							| 6 | 2 5 | imbitrrid | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐴  ∈  𝑋 ) ) | 
						
							| 7 |  | fclsneii | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑠  ∈  𝐹 )  →  ( 𝑛  ∩  𝑠 )  ≠  ∅ ) | 
						
							| 8 | 7 | 3expb | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  ( 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑠  ∈  𝐹 ) )  →  ( 𝑛  ∩  𝑠 )  ≠  ∅ ) | 
						
							| 9 | 8 | ralrimivva | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅ ) | 
						
							| 10 | 6 9 | jca2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅ ) ) ) | 
						
							| 11 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 12 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜 ) )  →  𝐽  ∈  Top ) | 
						
							| 13 |  | simprl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜 ) )  →  𝑜  ∈  𝐽 ) | 
						
							| 14 |  | simprr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜 ) )  →  𝐴  ∈  𝑜 ) | 
						
							| 15 |  | opnneip | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜 )  →  𝑜  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 16 | 12 13 14 15 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜 ) )  →  𝑜  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 17 |  | ineq1 | ⊢ ( 𝑛  =  𝑜  →  ( 𝑛  ∩  𝑠 )  =  ( 𝑜  ∩  𝑠 ) ) | 
						
							| 18 | 17 | neeq1d | ⊢ ( 𝑛  =  𝑜  →  ( ( 𝑛  ∩  𝑠 )  ≠  ∅  ↔  ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( 𝑛  =  𝑜  →  ( ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅  ↔  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) | 
						
							| 20 | 19 | rspcv | ⊢ ( 𝑜  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) | 
						
							| 21 | 16 20 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜 ) )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) | 
						
							| 22 | 21 | expr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑜  ∈  𝐽 )  →  ( 𝐴  ∈  𝑜  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) | 
						
							| 23 | 22 | com23 | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑜  ∈  𝐽 )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅  →  ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) | 
						
							| 24 | 23 | ralrimdva | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅  →  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) | 
						
							| 25 | 24 | imdistanda | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( ( 𝐴  ∈  𝑋  ∧  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅ )  →  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) ) | 
						
							| 26 |  | fclsopn | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) ) | 
						
							| 27 | 25 26 | sylibrd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( ( 𝐴  ∈  𝑋  ∧  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅ )  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) ) ) | 
						
							| 28 | 10 27 | impbid | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠  ∈  𝐹 ( 𝑛  ∩  𝑠 )  ≠  ∅ ) ) ) |