| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) ) | 
						
							| 2 |  | fclstop | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐽  ∈  Top ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  𝐽  ∈  Top ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 5 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 6 | 5 | neii1 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝑁  ⊆  ∪  𝐽 ) | 
						
							| 7 | 3 4 6 | syl2anc | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  𝑁  ⊆  ∪  𝐽 ) | 
						
							| 8 | 5 | ntrss2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑁  ⊆  ∪  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ⊆  𝑁 ) | 
						
							| 9 | 3 7 8 | syl2anc | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ⊆  𝑁 ) | 
						
							| 10 | 9 | ssrind | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ∩  𝑆 )  ⊆  ( 𝑁  ∩  𝑆 ) ) | 
						
							| 11 | 5 | ntropn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑁  ⊆  ∪  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ∈  𝐽 ) | 
						
							| 12 | 3 7 11 | syl2anc | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ∈  𝐽 ) | 
						
							| 13 | 5 | fclselbas | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐴  ∈  ∪  𝐽 ) | 
						
							| 14 | 1 13 | syl | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  𝐴  ∈  ∪  𝐽 ) | 
						
							| 15 | 14 | snssd | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  { 𝐴 }  ⊆  ∪  𝐽 ) | 
						
							| 16 | 5 | neiint | ⊢ ( ( 𝐽  ∈  Top  ∧  { 𝐴 }  ⊆  ∪  𝐽  ∧  𝑁  ⊆  ∪  𝐽 )  →  ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) | 
						
							| 17 | 3 15 7 16 | syl3anc | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) | 
						
							| 18 | 4 17 | mpbid | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) | 
						
							| 19 |  | snssg | ⊢ ( 𝐴  ∈  ∪  𝐽  →  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) | 
						
							| 20 | 14 19 | syl | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) | 
						
							| 21 | 18 20 | mpbird | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) | 
						
							| 22 |  | simp3 | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  𝑆  ∈  𝐹 ) | 
						
							| 23 |  | fclsopni | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  ( ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ∈  𝐽  ∧  𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ∧  𝑆  ∈  𝐹 ) )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ∩  𝑆 )  ≠  ∅ ) | 
						
							| 24 | 1 12 21 22 23 | syl13anc | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ∩  𝑆 )  ≠  ∅ ) | 
						
							| 25 |  | ssn0 | ⊢ ( ( ( ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ∩  𝑆 )  ⊆  ( 𝑁  ∩  𝑆 )  ∧  ( ( ( int ‘ 𝐽 ) ‘ 𝑁 )  ∩  𝑆 )  ≠  ∅ )  →  ( 𝑁  ∩  𝑆 )  ≠  ∅ ) | 
						
							| 26 | 10 24 25 | syl2anc | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∧  𝑆  ∈  𝐹 )  →  ( 𝑁  ∩  𝑆 )  ≠  ∅ ) |