| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 2 | 1 | fclsfil | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) ) | 
						
							| 3 |  | fclstopon | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ↔  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) ) ) | 
						
							| 4 | 2 3 | mpbird | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 5 |  | fclsopn | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ( 𝐴  ∈  ∪  𝐽  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) ) | 
						
							| 6 | 4 2 5 | syl2anc | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ( 𝐴  ∈  ∪  𝐽  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) ) | 
						
							| 7 | 6 | ibi | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐴  ∈  ∪  𝐽  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ ) ) ) | 
						
							| 8 |  | eleq2 | ⊢ ( 𝑜  =  𝑈  →  ( 𝐴  ∈  𝑜  ↔  𝐴  ∈  𝑈 ) ) | 
						
							| 9 |  | ineq1 | ⊢ ( 𝑜  =  𝑈  →  ( 𝑜  ∩  𝑠 )  =  ( 𝑈  ∩  𝑠 ) ) | 
						
							| 10 | 9 | neeq1d | ⊢ ( 𝑜  =  𝑈  →  ( ( 𝑜  ∩  𝑠 )  ≠  ∅  ↔  ( 𝑈  ∩  𝑠 )  ≠  ∅ ) ) | 
						
							| 11 | 10 | ralbidv | ⊢ ( 𝑜  =  𝑈  →  ( ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅  ↔  ∀ 𝑠  ∈  𝐹 ( 𝑈  ∩  𝑠 )  ≠  ∅ ) ) | 
						
							| 12 | 8 11 | imbi12d | ⊢ ( 𝑜  =  𝑈  →  ( ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ )  ↔  ( 𝐴  ∈  𝑈  →  ∀ 𝑠  ∈  𝐹 ( 𝑈  ∩  𝑠 )  ≠  ∅ ) ) ) | 
						
							| 13 | 12 | rspccv | ⊢ ( ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∀ 𝑠  ∈  𝐹 ( 𝑜  ∩  𝑠 )  ≠  ∅ )  →  ( 𝑈  ∈  𝐽  →  ( 𝐴  ∈  𝑈  →  ∀ 𝑠  ∈  𝐹 ( 𝑈  ∩  𝑠 )  ≠  ∅ ) ) ) | 
						
							| 14 | 7 13 | simpl2im | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝑈  ∈  𝐽  →  ( 𝐴  ∈  𝑈  →  ∀ 𝑠  ∈  𝐹 ( 𝑈  ∩  𝑠 )  ≠  ∅ ) ) ) | 
						
							| 15 |  | ineq2 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑈  ∩  𝑠 )  =  ( 𝑈  ∩  𝑆 ) ) | 
						
							| 16 | 15 | neeq1d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑈  ∩  𝑠 )  ≠  ∅  ↔  ( 𝑈  ∩  𝑆 )  ≠  ∅ ) ) | 
						
							| 17 | 16 | rspccv | ⊢ ( ∀ 𝑠  ∈  𝐹 ( 𝑈  ∩  𝑠 )  ≠  ∅  →  ( 𝑆  ∈  𝐹  →  ( 𝑈  ∩  𝑆 )  ≠  ∅ ) ) | 
						
							| 18 | 14 17 | syl8 | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝑈  ∈  𝐽  →  ( 𝐴  ∈  𝑈  →  ( 𝑆  ∈  𝐹  →  ( 𝑈  ∩  𝑆 )  ≠  ∅ ) ) ) ) | 
						
							| 19 | 18 | 3imp2 | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ∧  ( 𝑈  ∈  𝐽  ∧  𝐴  ∈  𝑈  ∧  𝑆  ∈  𝐹 ) )  →  ( 𝑈  ∩  𝑆 )  ≠  ∅ ) |