Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ⊆ 𝑋 ) |
3 |
2
|
3adant1 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ⊆ 𝑋 ) |
4 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
5 |
1 3 4
|
syl2anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
6 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
8 |
|
simp3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ∈ 𝐹 ) |
9 |
|
fbncp |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) |
11 |
|
simp2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
12 |
|
trfil3 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ↔ ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) ) |
13 |
11 3 12
|
syl2anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ↔ ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) ) |
14 |
10 13
|
mpbird |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ) |
15 |
|
fclsopn |
⊢ ( ( ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) ) ) |
16 |
5 14 15
|
syl2anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) ) ) |
17 |
|
in32 |
⊢ ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) = ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑠 ) |
18 |
|
ineq2 |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑠 ) = ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ) |
19 |
17 18
|
syl5eq |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) = ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ) |
20 |
19
|
neeq1d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ↔ ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ≠ ∅ ) ) |
21 |
20
|
rspccv |
⊢ ( ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ → ( 𝑡 ∈ 𝐹 → ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ≠ ∅ ) ) |
22 |
|
inss1 |
⊢ ( 𝑢 ∩ 𝑌 ) ⊆ 𝑢 |
23 |
|
ssrin |
⊢ ( ( 𝑢 ∩ 𝑌 ) ⊆ 𝑢 → ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ⊆ ( 𝑢 ∩ 𝑡 ) ) |
24 |
22 23
|
ax-mp |
⊢ ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ⊆ ( 𝑢 ∩ 𝑡 ) |
25 |
|
ssn0 |
⊢ ( ( ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ⊆ ( 𝑢 ∩ 𝑡 ) ∧ ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ≠ ∅ ) → ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) |
26 |
24 25
|
mpan |
⊢ ( ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ≠ ∅ → ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) |
27 |
21 26
|
syl6 |
⊢ ( ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ → ( 𝑡 ∈ 𝐹 → ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) |
28 |
27
|
ralrimiv |
⊢ ( ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) |
29 |
11
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
30 |
|
simpr |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ∈ 𝐹 ) |
31 |
8
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑌 ∈ 𝐹 ) |
32 |
|
filin |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ 𝐹 ) |
33 |
29 30 31 32
|
syl3anc |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ 𝐹 ) |
34 |
|
ineq2 |
⊢ ( 𝑡 = ( 𝑠 ∩ 𝑌 ) → ( 𝑢 ∩ 𝑡 ) = ( 𝑢 ∩ ( 𝑠 ∩ 𝑌 ) ) ) |
35 |
|
inass |
⊢ ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) = ( 𝑢 ∩ ( 𝑠 ∩ 𝑌 ) ) |
36 |
34 35
|
eqtr4di |
⊢ ( 𝑡 = ( 𝑠 ∩ 𝑌 ) → ( 𝑢 ∩ 𝑡 ) = ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ) |
37 |
36
|
neeq1d |
⊢ ( 𝑡 = ( 𝑠 ∩ 𝑌 ) → ( ( 𝑢 ∩ 𝑡 ) ≠ ∅ ↔ ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
38 |
37
|
rspcv |
⊢ ( ( 𝑠 ∩ 𝑌 ) ∈ 𝐹 → ( ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ → ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
39 |
33 38
|
syl |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝐹 ) → ( ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ → ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
40 |
39
|
ralrimdva |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) → ( ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ → ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
41 |
28 40
|
impbid2 |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) → ( ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ↔ ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) |
42 |
41
|
imbi2d |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑢 → ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ↔ ( 𝑥 ∈ 𝑢 → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) ) |
43 |
42
|
ralbidva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) ) |
44 |
|
vex |
⊢ 𝑢 ∈ V |
45 |
44
|
inex1 |
⊢ ( 𝑢 ∩ 𝑌 ) ∈ V |
46 |
45
|
a1i |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑢 ∩ 𝑌 ) ∈ V ) |
47 |
|
elrest |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑦 = ( 𝑢 ∩ 𝑌 ) ) ) |
48 |
47
|
3adant2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑦 = ( 𝑢 ∩ 𝑌 ) ) ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑦 = ( 𝑢 ∩ 𝑌 ) ) ) |
50 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝑢 ∩ 𝑌 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
51 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑢 ∩ 𝑌 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑌 ) ) |
52 |
51
|
rbaib |
⊢ ( 𝑥 ∈ 𝑌 → ( 𝑥 ∈ ( 𝑢 ∩ 𝑌 ) ↔ 𝑥 ∈ 𝑢 ) ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 ∈ ( 𝑢 ∩ 𝑌 ) ↔ 𝑥 ∈ 𝑢 ) ) |
54 |
50 53
|
sylan9bbr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 = ( 𝑢 ∩ 𝑌 ) ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑢 ) ) |
55 |
|
vex |
⊢ 𝑠 ∈ V |
56 |
55
|
inex1 |
⊢ ( 𝑠 ∩ 𝑌 ) ∈ V |
57 |
56
|
a1i |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ V ) |
58 |
|
elrest |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ↔ ∃ 𝑠 ∈ 𝐹 𝑧 = ( 𝑠 ∩ 𝑌 ) ) ) |
59 |
58
|
3adant1 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ↔ ∃ 𝑠 ∈ 𝐹 𝑧 = ( 𝑠 ∩ 𝑌 ) ) ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ↔ ∃ 𝑠 ∈ 𝐹 𝑧 = ( 𝑠 ∩ 𝑌 ) ) ) |
61 |
|
ineq2 |
⊢ ( 𝑧 = ( 𝑠 ∩ 𝑌 ) → ( 𝑦 ∩ 𝑧 ) = ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ) |
62 |
61
|
adantl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 = ( 𝑠 ∩ 𝑌 ) ) → ( 𝑦 ∩ 𝑧 ) = ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ) |
63 |
62
|
neeq1d |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 = ( 𝑠 ∩ 𝑌 ) ) → ( ( 𝑦 ∩ 𝑧 ) ≠ ∅ ↔ ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ≠ ∅ ) ) |
64 |
57 60 63
|
ralxfr2d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐹 ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ≠ ∅ ) ) |
65 |
|
ineq1 |
⊢ ( 𝑦 = ( 𝑢 ∩ 𝑌 ) → ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) = ( ( 𝑢 ∩ 𝑌 ) ∩ ( 𝑠 ∩ 𝑌 ) ) ) |
66 |
|
inindir |
⊢ ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) = ( ( 𝑢 ∩ 𝑌 ) ∩ ( 𝑠 ∩ 𝑌 ) ) |
67 |
65 66
|
eqtr4di |
⊢ ( 𝑦 = ( 𝑢 ∩ 𝑌 ) → ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) = ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ) |
68 |
67
|
neeq1d |
⊢ ( 𝑦 = ( 𝑢 ∩ 𝑌 ) → ( ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ≠ ∅ ↔ ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
69 |
68
|
ralbidv |
⊢ ( 𝑦 = ( 𝑢 ∩ 𝑌 ) → ( ∀ 𝑠 ∈ 𝐹 ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
70 |
64 69
|
sylan9bb |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 = ( 𝑢 ∩ 𝑌 ) ) → ( ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
71 |
54 70
|
imbi12d |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 = ( 𝑢 ∩ 𝑌 ) ) → ( ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ↔ ( 𝑥 ∈ 𝑢 → ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) ) |
72 |
46 49 71
|
ralxfr2d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) ) |
73 |
1
|
adantr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
74 |
11
|
adantr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
75 |
3
|
sselda |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
76 |
|
fclsopn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) ) ) |
77 |
76
|
baibd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) ) |
78 |
73 74 75 77
|
syl21anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) ) |
79 |
43 72 78
|
3bitr4d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ↔ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
80 |
79
|
pm5.32da |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝑥 ∈ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
81 |
16 80
|
bitrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
82 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐽 fClus 𝐹 ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ) |
83 |
82
|
biancomi |
⊢ ( 𝑥 ∈ ( ( 𝐽 fClus 𝐹 ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ 𝑌 ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
84 |
81 83
|
bitr4di |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) ↔ 𝑥 ∈ ( ( 𝐽 fClus 𝐹 ) ∩ 𝑌 ) ) ) |
85 |
84
|
eqrdv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) = ( ( 𝐽 fClus 𝐹 ) ∩ 𝑌 ) ) |