Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐽 ⊆ 𝐾 ) |
2 |
|
ssralv |
⊢ ( 𝐽 ⊆ 𝐾 → ( ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
3 |
2
|
anim2d |
⊢ ( 𝐽 ⊆ 𝐾 → ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) → ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
4 |
1 3
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) → ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
6 |
|
fclstopon |
⊢ ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
8 |
5 7
|
mpbird |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
9 |
|
fclsopn |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
10 |
8 5 9
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
11 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
12 |
|
fclsopn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
13 |
11 5 12
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
14 |
4 10 13
|
3imtr4d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
15 |
14
|
ex |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
16 |
15
|
pm2.43d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
17 |
16
|
ssrdv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝐾 fClus 𝐹 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |