| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl3 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐽 ⊆ 𝐾 ) |
| 2 |
|
ssralv |
⊢ ( 𝐽 ⊆ 𝐾 → ( ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 3 |
2
|
anim2d |
⊢ ( 𝐽 ⊆ 𝐾 → ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) → ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 4 |
1 3
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) → ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 5 |
|
simpl2 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 6 |
|
fclstopon |
⊢ ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 7 |
6
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 8 |
5 7
|
mpbird |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 |
|
fclsopn |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 10 |
8 5 9
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 11 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 12 |
|
fclsopn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 13 |
11 5 12
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 14 |
4 10 13
|
3imtr4d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 15 |
14
|
ex |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
| 16 |
15
|
pm2.43d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 17 |
16
|
ssrdv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝐾 fClus 𝐹 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |