| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl3 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  ∧  𝑥  ∈  ( 𝐽  fClus  𝐺 ) )  →  𝐹  ⊆  𝐺 ) | 
						
							| 2 |  | ssralv | ⊢ ( 𝐹  ⊆  𝐺  →  ( ∀ 𝑠  ∈  𝐺 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 )  →  ∀ 𝑠  ∈  𝐹 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  ∧  𝑥  ∈  ( 𝐽  fClus  𝐺 ) )  →  ( ∀ 𝑠  ∈  𝐺 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 )  →  ∀ 𝑠  ∈  𝐹 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | 
						
							| 4 |  | simpl1 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  ∧  𝑥  ∈  ( 𝐽  fClus  𝐺 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 5 |  | fclstopon | ⊢ ( 𝑥  ∈  ( 𝐽  fClus  𝐺 )  →  ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  𝐺  ∈  ( Fil ‘ 𝑋 ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  ∧  𝑥  ∈  ( 𝐽  fClus  𝐺 ) )  →  ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  𝐺  ∈  ( Fil ‘ 𝑋 ) ) ) | 
						
							| 7 | 4 6 | mpbid | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  ∧  𝑥  ∈  ( 𝐽  fClus  𝐺 ) )  →  𝐺  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 8 |  | isfcls2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑥  ∈  ( 𝐽  fClus  𝐺 )  ↔  ∀ 𝑠  ∈  𝐺 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | 
						
							| 9 | 4 7 8 | syl2anc | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  ∧  𝑥  ∈  ( 𝐽  fClus  𝐺 ) )  →  ( 𝑥  ∈  ( 𝐽  fClus  𝐺 )  ↔  ∀ 𝑠  ∈  𝐺 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | 
						
							| 10 |  | simpl2 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  ∧  𝑥  ∈  ( 𝐽  fClus  𝐺 ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 11 |  | isfcls2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑥  ∈  ( 𝐽  fClus  𝐹 )  ↔  ∀ 𝑠  ∈  𝐹 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | 
						
							| 12 | 4 10 11 | syl2anc | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  ∧  𝑥  ∈  ( 𝐽  fClus  𝐺 ) )  →  ( 𝑥  ∈  ( 𝐽  fClus  𝐹 )  ↔  ∀ 𝑠  ∈  𝐹 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | 
						
							| 13 | 3 9 12 | 3imtr4d | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  ∧  𝑥  ∈  ( 𝐽  fClus  𝐺 ) )  →  ( 𝑥  ∈  ( 𝐽  fClus  𝐺 )  →  𝑥  ∈  ( 𝐽  fClus  𝐹 ) ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  →  ( 𝑥  ∈  ( 𝐽  fClus  𝐺 )  →  ( 𝑥  ∈  ( 𝐽  fClus  𝐺 )  →  𝑥  ∈  ( 𝐽  fClus  𝐹 ) ) ) ) | 
						
							| 15 | 14 | pm2.43d | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  →  ( 𝑥  ∈  ( 𝐽  fClus  𝐺 )  →  𝑥  ∈  ( 𝐽  fClus  𝐹 ) ) ) | 
						
							| 16 | 15 | ssrdv | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 )  →  ( 𝐽  fClus  𝐺 )  ⊆  ( 𝐽  fClus  𝐹 ) ) |