Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → 𝐹 ⊆ 𝐺 ) |
2 |
|
ssralv |
⊢ ( 𝐹 ⊆ 𝐺 → ( ∀ 𝑠 ∈ 𝐺 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
3 |
1 2
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → ( ∀ 𝑠 ∈ 𝐺 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
5 |
|
fclstopon |
⊢ ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ) |
7 |
4 6
|
mpbid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) |
8 |
|
isfcls2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ↔ ∀ 𝑠 ∈ 𝐺 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
9 |
4 7 8
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ↔ ∀ 𝑠 ∈ 𝐺 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
10 |
|
simpl2 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
11 |
|
isfcls2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
12 |
4 10 11
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
13 |
3 9 12
|
3imtr4d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
14 |
13
|
ex |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
15 |
14
|
pm2.43d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
16 |
15
|
ssrdv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐽 fClus 𝐺 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |