| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fclstop | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐽  ∈  Top ) | 
						
							| 2 |  | istopon | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝐽 ) ) | 
						
							| 3 | 2 | baib | ⊢ ( 𝐽  ∈  Top  →  ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  𝑋  =  ∪  𝐽 ) ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  𝑋  =  ∪  𝐽 ) ) | 
						
							| 5 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 6 | 5 | fclsfil | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑋  =  ∪  𝐽  →  ( Fil ‘ 𝑋 )  =  ( Fil ‘ ∪  𝐽 ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝑋  =  ∪  𝐽  →  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ↔  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) ) ) | 
						
							| 9 | 6 8 | syl5ibrcom | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝑋  =  ∪  𝐽  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) ) | 
						
							| 10 |  | filunibas | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐽 )  →  ∪  𝐹  =  ∪  𝐽 ) | 
						
							| 11 | 6 10 | syl | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ∪  𝐹  =  ∪  𝐽 ) | 
						
							| 12 |  | filunibas | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ∪  𝐹  =  𝑋 ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ∪  𝐹  =  ∪  𝐽  ↔  𝑋  =  ∪  𝐽 ) ) | 
						
							| 14 | 11 13 | syl5ibcom | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) ) | 
						
							| 15 | 9 14 | impbid | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝑋  =  ∪  𝐽  ↔  𝐹  ∈  ( Fil ‘ 𝑋 ) ) ) | 
						
							| 16 | 4 15 | bitrd | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  𝐹  ∈  ( Fil ‘ 𝑋 ) ) ) |