Step |
Hyp |
Ref |
Expression |
1 |
|
fclsval.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
simpl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → 𝐽 ∈ Top ) |
3 |
|
fvssunirn |
⊢ ( Fil ‘ 𝑌 ) ⊆ ∪ ran Fil |
4 |
3
|
sseli |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → 𝐹 ∈ ∪ ran Fil ) |
5 |
4
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → 𝐹 ∈ ∪ ran Fil ) |
6 |
|
filn0 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → 𝐹 ≠ ∅ ) |
7 |
6
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → 𝐹 ≠ ∅ ) |
8 |
|
fvex |
⊢ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V |
9 |
8
|
rgenw |
⊢ ∀ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V |
10 |
|
iinexg |
⊢ ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V ) → ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V ) |
11 |
7 9 10
|
sylancl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V ) |
12 |
|
0ex |
⊢ ∅ ∈ V |
13 |
|
ifcl |
⊢ ( ( ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V ∧ ∅ ∈ V ) → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ∈ V ) |
14 |
11 12 13
|
sylancl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ∈ V ) |
15 |
|
unieq |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) |
16 |
15 1
|
eqtr4di |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
17 |
|
unieq |
⊢ ( 𝑓 = 𝐹 → ∪ 𝑓 = ∪ 𝐹 ) |
18 |
16 17
|
eqeqan12d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ∪ 𝑗 = ∪ 𝑓 ↔ 𝑋 = ∪ 𝐹 ) ) |
19 |
|
iineq1 |
⊢ ( 𝑓 = 𝐹 → ∩ 𝑡 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∩ 𝑡 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) ) |
21 |
|
simpll |
⊢ ( ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) ∧ 𝑡 ∈ 𝐹 ) → 𝑗 = 𝐽 ) |
22 |
21
|
fveq2d |
⊢ ( ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) ∧ 𝑡 ∈ 𝐹 ) → ( cls ‘ 𝑗 ) = ( cls ‘ 𝐽 ) ) |
23 |
22
|
fveq1d |
⊢ ( ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) ∧ 𝑡 ∈ 𝐹 ) → ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) |
24 |
23
|
iineq2dv |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) |
25 |
20 24
|
eqtrd |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∩ 𝑡 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) |
26 |
18 25
|
ifbieq1d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → if ( ∪ 𝑗 = ∪ 𝑓 , ∩ 𝑡 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) , ∅ ) = if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |
27 |
|
df-fcls |
⊢ fClus = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ if ( ∪ 𝑗 = ∪ 𝑓 , ∩ 𝑡 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) , ∅ ) ) |
28 |
26 27
|
ovmpoga |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ∈ V ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |
29 |
2 5 14 28
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |
30 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → ∪ 𝐹 = 𝑌 ) |
31 |
30
|
eqeq2d |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → ( 𝑋 = ∪ 𝐹 ↔ 𝑋 = 𝑌 ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝑋 = ∪ 𝐹 ↔ 𝑋 = 𝑌 ) ) |
33 |
32
|
ifbid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) = if ( 𝑋 = 𝑌 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |
34 |
29 33
|
eqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝑌 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |