Metamath Proof Explorer


Theorem fclsval

Description: The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis fclsval.x 𝑋 = 𝐽
Assertion fclsval ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝑌 , 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) )

Proof

Step Hyp Ref Expression
1 fclsval.x 𝑋 = 𝐽
2 simpl ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → 𝐽 ∈ Top )
3 fvssunirn ( Fil ‘ 𝑌 ) ⊆ ran Fil
4 3 sseli ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → 𝐹 ran Fil )
5 4 adantl ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → 𝐹 ran Fil )
6 filn0 ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → 𝐹 ≠ ∅ )
7 6 adantl ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → 𝐹 ≠ ∅ )
8 fvex ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V
9 8 rgenw 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V
10 iinexg ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V ) → 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V )
11 7 9 10 sylancl ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V )
12 0ex ∅ ∈ V
13 ifcl ( ( 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V ∧ ∅ ∈ V ) → if ( 𝑋 = 𝐹 , 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ∈ V )
14 11 12 13 sylancl ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → if ( 𝑋 = 𝐹 , 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ∈ V )
15 unieq ( 𝑗 = 𝐽 𝑗 = 𝐽 )
16 15 1 eqtr4di ( 𝑗 = 𝐽 𝑗 = 𝑋 )
17 unieq ( 𝑓 = 𝐹 𝑓 = 𝐹 )
18 16 17 eqeqan12d ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → ( 𝑗 = 𝑓𝑋 = 𝐹 ) )
19 iineq1 ( 𝑓 = 𝐹 𝑡𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = 𝑡𝐹 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) )
20 19 adantl ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → 𝑡𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = 𝑡𝐹 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) )
21 simpll ( ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) ∧ 𝑡𝐹 ) → 𝑗 = 𝐽 )
22 21 fveq2d ( ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) ∧ 𝑡𝐹 ) → ( cls ‘ 𝑗 ) = ( cls ‘ 𝐽 ) )
23 22 fveq1d ( ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) ∧ 𝑡𝐹 ) → ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) )
24 23 iineq2dv ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → 𝑡𝐹 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) )
25 20 24 eqtrd ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → 𝑡𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) )
26 18 25 ifbieq1d ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → if ( 𝑗 = 𝑓 , 𝑡𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) , ∅ ) = if ( 𝑋 = 𝐹 , 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) )
27 df-fcls fClus = ( 𝑗 ∈ Top , 𝑓 ran Fil ↦ if ( 𝑗 = 𝑓 , 𝑡𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) , ∅ ) )
28 26 27 ovmpoga ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ if ( 𝑋 = 𝐹 , 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ∈ V ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝐹 , 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) )
29 2 5 14 28 syl3anc ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝐹 , 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) )
30 filunibas ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → 𝐹 = 𝑌 )
31 30 eqeq2d ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → ( 𝑋 = 𝐹𝑋 = 𝑌 ) )
32 31 adantl ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝑋 = 𝐹𝑋 = 𝑌 ) )
33 32 ifbid ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → if ( 𝑋 = 𝐹 , 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) = if ( 𝑋 = 𝑌 , 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) )
34 29 33 eqtrd ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝑌 , 𝑡𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) )