Step |
Hyp |
Ref |
Expression |
1 |
|
fcnre.1 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
2 |
|
fcnre.3 |
⊢ 𝑇 = ∪ 𝐽 |
3 |
|
sfcnre.5 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
4 |
|
fcnre.6 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) |
5 |
4 3
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
6 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
8 |
2
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑇 ) ) |
9 |
7 8
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑇 ) ) |
10 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
11 |
1 10
|
eqeltri |
⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℝ ) ) |
13 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑇 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑇 ⟶ ℝ ) |
14 |
9 12 5 13
|
syl3anc |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |