Metamath Proof Explorer


Theorem fcnvres

Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998)

Ref Expression
Assertion fcnvres ( 𝐹 : 𝐴𝐵 ( 𝐹𝐴 ) = ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 relcnv Rel ( 𝐹𝐴 )
2 relres Rel ( 𝐹𝐵 )
3 opelf ( ( 𝐹 : 𝐴𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) → ( 𝑥𝐴𝑦𝐵 ) )
4 3 simpld ( ( 𝐹 : 𝐴𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) → 𝑥𝐴 )
5 4 ex ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹𝑥𝐴 ) )
6 5 pm4.71rd ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ↔ ( 𝑥𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) ) )
7 vex 𝑦 ∈ V
8 vex 𝑥 ∈ V
9 7 8 opelcnv ( ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐹𝐴 ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐹𝐴 ) )
10 7 opelresi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐹𝐴 ) ↔ ( 𝑥𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) )
11 9 10 bitri ( ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐹𝐴 ) ↔ ( 𝑥𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) )
12 6 11 bitr4di ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐹𝐴 ) ) )
13 3 simprd ( ( 𝐹 : 𝐴𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) → 𝑦𝐵 )
14 13 ex ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹𝑦𝐵 ) )
15 14 pm4.71rd ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ↔ ( 𝑦𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) ) )
16 8 opelresi ( ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐹𝐵 ) ↔ ( 𝑦𝐵 ∧ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐹 ) )
17 7 8 opelcnv ( ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐹 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 )
18 17 anbi2i ( ( 𝑦𝐵 ∧ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐹 ) ↔ ( 𝑦𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) )
19 16 18 bitri ( ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐹𝐵 ) ↔ ( 𝑦𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) )
20 15 19 bitr4di ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐹𝐵 ) ) )
21 12 20 bitr3d ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐹𝐴 ) ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐹𝐵 ) ) )
22 1 2 21 eqrelrdv ( 𝐹 : 𝐴𝐵 ( 𝐹𝐴 ) = ( 𝐹𝐵 ) )