| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffun |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → Fun 𝐺 ) |
| 2 |
|
fcof |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ Fun 𝐺 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) ⟶ 𝐶 ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) ⟶ 𝐶 ) |
| 4 |
|
fimacnv |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) |
| 5 |
4
|
eqcomd |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → 𝐴 = ( ◡ 𝐺 “ 𝐵 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → 𝐴 = ( ◡ 𝐺 “ 𝐵 ) ) |
| 7 |
6
|
feq2d |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ↔ ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) ⟶ 𝐶 ) ) |
| 8 |
3 7
|
mpbird |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |