Metamath Proof Explorer


Theorem fco3OLD

Description: Obsolete version of funcofd as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses fco3OLD.1 ( 𝜑 → Fun 𝐹 )
fco3OLD.2 ( 𝜑 → Fun 𝐺 )
Assertion fco3OLD ( 𝜑 → ( 𝐹𝐺 ) : ( 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 fco3OLD.1 ( 𝜑 → Fun 𝐹 )
2 fco3OLD.2 ( 𝜑 → Fun 𝐺 )
3 funco ( ( Fun 𝐹 ∧ Fun 𝐺 ) → Fun ( 𝐹𝐺 ) )
4 1 2 3 syl2anc ( 𝜑 → Fun ( 𝐹𝐺 ) )
5 fdmrn ( Fun ( 𝐹𝐺 ) ↔ ( 𝐹𝐺 ) : dom ( 𝐹𝐺 ) ⟶ ran ( 𝐹𝐺 ) )
6 4 5 sylib ( 𝜑 → ( 𝐹𝐺 ) : dom ( 𝐹𝐺 ) ⟶ ran ( 𝐹𝐺 ) )
7 dmco dom ( 𝐹𝐺 ) = ( 𝐺 “ dom 𝐹 )
8 7 feq2i ( ( 𝐹𝐺 ) : dom ( 𝐹𝐺 ) ⟶ ran ( 𝐹𝐺 ) ↔ ( 𝐹𝐺 ) : ( 𝐺 “ dom 𝐹 ) ⟶ ran ( 𝐹𝐺 ) )
9 6 8 sylib ( 𝜑 → ( 𝐹𝐺 ) : ( 𝐺 “ dom 𝐹 ) ⟶ ran ( 𝐹𝐺 ) )
10 rncoss ran ( 𝐹𝐺 ) ⊆ ran 𝐹
11 10 a1i ( 𝜑 → ran ( 𝐹𝐺 ) ⊆ ran 𝐹 )
12 9 11 fssd ( 𝜑 → ( 𝐹𝐺 ) : ( 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 )