Step |
Hyp |
Ref |
Expression |
1 |
|
fco3OLD.1 |
⊢ ( 𝜑 → Fun 𝐹 ) |
2 |
|
fco3OLD.2 |
⊢ ( 𝜑 → Fun 𝐺 ) |
3 |
|
funco |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ) → Fun ( 𝐹 ∘ 𝐺 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → Fun ( 𝐹 ∘ 𝐺 ) ) |
5 |
|
fdmrn |
⊢ ( Fun ( 𝐹 ∘ 𝐺 ) ↔ ( 𝐹 ∘ 𝐺 ) : dom ( 𝐹 ∘ 𝐺 ) ⟶ ran ( 𝐹 ∘ 𝐺 ) ) |
6 |
4 5
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : dom ( 𝐹 ∘ 𝐺 ) ⟶ ran ( 𝐹 ∘ 𝐺 ) ) |
7 |
|
dmco |
⊢ dom ( 𝐹 ∘ 𝐺 ) = ( ◡ 𝐺 “ dom 𝐹 ) |
8 |
7
|
feq2i |
⊢ ( ( 𝐹 ∘ 𝐺 ) : dom ( 𝐹 ∘ 𝐺 ) ⟶ ran ( 𝐹 ∘ 𝐺 ) ↔ ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ dom 𝐹 ) ⟶ ran ( 𝐹 ∘ 𝐺 ) ) |
9 |
6 8
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ dom 𝐹 ) ⟶ ran ( 𝐹 ∘ 𝐺 ) ) |
10 |
|
rncoss |
⊢ ran ( 𝐹 ∘ 𝐺 ) ⊆ ran 𝐹 |
11 |
10
|
a1i |
⊢ ( 𝜑 → ran ( 𝐹 ∘ 𝐺 ) ⊆ ran 𝐹 ) |
12 |
9 11
|
fssd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 ) |