| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcobij.1 |
⊢ ( 𝜑 → 𝐺 : 𝑆 –1-1-onto→ 𝑇 ) |
| 2 |
|
fcobij.2 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
| 3 |
|
fcobij.3 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 4 |
|
fcobij.4 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑊 ) |
| 5 |
|
fcobijfs.5 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑆 ) |
| 6 |
|
fcobijfs.6 |
⊢ 𝑄 = ( 𝐺 ‘ 𝑂 ) |
| 7 |
|
fcobijfs.7 |
⊢ 𝑋 = { 𝑔 ∈ ( 𝑆 ↑m 𝑅 ) ∣ 𝑔 finSupp 𝑂 } |
| 8 |
|
fcobijfs.8 |
⊢ 𝑌 = { ℎ ∈ ( 𝑇 ↑m 𝑅 ) ∣ ℎ finSupp 𝑄 } |
| 9 |
|
breq1 |
⊢ ( ℎ = 𝑔 → ( ℎ finSupp 𝑂 ↔ 𝑔 finSupp 𝑂 ) ) |
| 10 |
9
|
cbvrabv |
⊢ { ℎ ∈ ( 𝑆 ↑m 𝑅 ) ∣ ℎ finSupp 𝑂 } = { 𝑔 ∈ ( 𝑆 ↑m 𝑅 ) ∣ 𝑔 finSupp 𝑂 } |
| 11 |
7 10
|
eqtr4i |
⊢ 𝑋 = { ℎ ∈ ( 𝑆 ↑m 𝑅 ) ∣ ℎ finSupp 𝑂 } |
| 12 |
|
f1oi |
⊢ ( I ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑅 |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑅 ) |
| 14 |
11 8 6 13 1 2 3 2 4 5
|
mapfien |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑋 ↦ ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) ) : 𝑋 –1-1-onto→ 𝑌 ) |
| 15 |
7
|
ssrab3 |
⊢ 𝑋 ⊆ ( 𝑆 ↑m 𝑅 ) |
| 16 |
15
|
sseli |
⊢ ( 𝑓 ∈ 𝑋 → 𝑓 ∈ ( 𝑆 ↑m 𝑅 ) ) |
| 17 |
|
coass |
⊢ ( ( 𝐺 ∘ 𝑓 ) ∘ ( I ↾ 𝑅 ) ) = ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) |
| 18 |
|
f1of |
⊢ ( 𝐺 : 𝑆 –1-1-onto→ 𝑇 → 𝐺 : 𝑆 ⟶ 𝑇 ) |
| 19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ 𝑇 ) |
| 20 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝑆 ↑m 𝑅 ) → 𝑓 : 𝑅 ⟶ 𝑆 ) |
| 21 |
|
fco |
⊢ ( ( 𝐺 : 𝑆 ⟶ 𝑇 ∧ 𝑓 : 𝑅 ⟶ 𝑆 ) → ( 𝐺 ∘ 𝑓 ) : 𝑅 ⟶ 𝑇 ) |
| 22 |
19 20 21
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑅 ) ) → ( 𝐺 ∘ 𝑓 ) : 𝑅 ⟶ 𝑇 ) |
| 23 |
|
fcoi1 |
⊢ ( ( 𝐺 ∘ 𝑓 ) : 𝑅 ⟶ 𝑇 → ( ( 𝐺 ∘ 𝑓 ) ∘ ( I ↾ 𝑅 ) ) = ( 𝐺 ∘ 𝑓 ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑅 ) ) → ( ( 𝐺 ∘ 𝑓 ) ∘ ( I ↾ 𝑅 ) ) = ( 𝐺 ∘ 𝑓 ) ) |
| 25 |
17 24
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑅 ) ) → ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) = ( 𝐺 ∘ 𝑓 ) ) |
| 26 |
16 25
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) = ( 𝐺 ∘ 𝑓 ) ) |
| 27 |
26
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑋 ↦ ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) ) = ( 𝑓 ∈ 𝑋 ↦ ( 𝐺 ∘ 𝑓 ) ) ) |
| 28 |
27
|
f1oeq1d |
⊢ ( 𝜑 → ( ( 𝑓 ∈ 𝑋 ↦ ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) ) : 𝑋 –1-1-onto→ 𝑌 ↔ ( 𝑓 ∈ 𝑋 ↦ ( 𝐺 ∘ 𝑓 ) ) : 𝑋 –1-1-onto→ 𝑌 ) ) |
| 29 |
14 28
|
mpbid |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑋 ↦ ( 𝐺 ∘ 𝑓 ) ) : 𝑋 –1-1-onto→ 𝑌 ) |