Metamath Proof Explorer


Theorem fcod

Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fcod.1 ( 𝜑𝐹 : 𝐵𝐶 )
fcod.2 ( 𝜑𝐺 : 𝐴𝐵 )
Assertion fcod ( 𝜑 → ( 𝐹𝐺 ) : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 fcod.1 ( 𝜑𝐹 : 𝐵𝐶 )
2 fcod.2 ( 𝜑𝐺 : 𝐴𝐵 )
3 fco ( ( 𝐹 : 𝐵𝐶𝐺 : 𝐴𝐵 ) → ( 𝐹𝐺 ) : 𝐴𝐶 )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐹𝐺 ) : 𝐴𝐶 )