Metamath Proof Explorer
Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypotheses |
fcod.1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
|
|
fcod.2 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
|
Assertion |
fcod |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fcod.1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
2 |
|
fcod.2 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
3 |
|
fco |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |