| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 |  | simprr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 3 | 2 | fveq2d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 5 |  | simprll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 6 |  | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑅  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 7 | 4 5 6 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ( 𝑅  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 8 |  | simprlr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 9 |  | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑅  ∘  𝐹 ) ‘ 𝑦 )  =  ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 10 | 4 8 9 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ( 𝑅  ∘  𝐹 ) ‘ 𝑦 )  =  ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 11 | 3 7 10 | 3eqtr4d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ( 𝑅  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( 𝑅  ∘  𝐹 ) ‘ 𝑦 ) ) | 
						
							| 12 |  | simplr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) ) | 
						
							| 13 | 12 | fveq1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ( 𝑅  ∘  𝐹 ) ‘ 𝑥 )  =  ( (  I   ↾  𝐴 ) ‘ 𝑥 ) ) | 
						
							| 14 | 12 | fveq1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ( 𝑅  ∘  𝐹 ) ‘ 𝑦 )  =  ( (  I   ↾  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 15 | 11 13 14 | 3eqtr3d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( (  I   ↾  𝐴 ) ‘ 𝑥 )  =  ( (  I   ↾  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 16 |  | fvresi | ⊢ ( 𝑥  ∈  𝐴  →  ( (  I   ↾  𝐴 ) ‘ 𝑥 )  =  𝑥 ) | 
						
							| 17 | 5 16 | syl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( (  I   ↾  𝐴 ) ‘ 𝑥 )  =  𝑥 ) | 
						
							| 18 |  | fvresi | ⊢ ( 𝑦  ∈  𝐴  →  ( (  I   ↾  𝐴 ) ‘ 𝑦 )  =  𝑦 ) | 
						
							| 19 | 8 18 | syl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ( (  I   ↾  𝐴 ) ‘ 𝑦 )  =  𝑦 ) | 
						
							| 20 | 15 17 19 | 3eqtr3d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  𝑥  =  𝑦 ) | 
						
							| 21 | 20 | expr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 22 | 21 | ralrimivva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 23 |  | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 24 | 1 22 23 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝑅  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  →  𝐹 : 𝐴 –1-1→ 𝐵 ) |