Metamath Proof Explorer


Theorem fcof1

Description: An application is injective if a retraction exists. Proposition 8 of BourbakiEns p. E.II.18. (Contributed by FL, 11-Nov-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion fcof1 ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴1-1𝐵 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴𝐵 )
2 simprr ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
3 2 fveq2d ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( 𝑅 ‘ ( 𝐹𝑥 ) ) = ( 𝑅 ‘ ( 𝐹𝑦 ) ) )
4 simpll ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → 𝐹 : 𝐴𝐵 )
5 simprll ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → 𝑥𝐴 )
6 fvco3 ( ( 𝐹 : 𝐴𝐵𝑥𝐴 ) → ( ( 𝑅𝐹 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝐹𝑥 ) ) )
7 4 5 6 syl2anc ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( ( 𝑅𝐹 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝐹𝑥 ) ) )
8 simprlr ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → 𝑦𝐴 )
9 fvco3 ( ( 𝐹 : 𝐴𝐵𝑦𝐴 ) → ( ( 𝑅𝐹 ) ‘ 𝑦 ) = ( 𝑅 ‘ ( 𝐹𝑦 ) ) )
10 4 8 9 syl2anc ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( ( 𝑅𝐹 ) ‘ 𝑦 ) = ( 𝑅 ‘ ( 𝐹𝑦 ) ) )
11 3 7 10 3eqtr4d ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( ( 𝑅𝐹 ) ‘ 𝑥 ) = ( ( 𝑅𝐹 ) ‘ 𝑦 ) )
12 simplr ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) )
13 12 fveq1d ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( ( 𝑅𝐹 ) ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) )
14 12 fveq1d ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( ( 𝑅𝐹 ) ‘ 𝑦 ) = ( ( I ↾ 𝐴 ) ‘ 𝑦 ) )
15 11 13 14 3eqtr3d ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑦 ) )
16 fvresi ( 𝑥𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 )
17 5 16 syl ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 )
18 fvresi ( 𝑦𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 )
19 8 18 syl ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 )
20 15 17 19 3eqtr3d ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → 𝑥 = 𝑦 )
21 20 expr ( ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
22 21 ralrimivva ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) → ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
23 dff13 ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
24 1 22 23 sylanbrc ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑅𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴1-1𝐵 )