Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
simprr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
3 |
2
|
fveq2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
5 |
|
simprll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 ∈ 𝐴 ) |
6 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
8 |
|
simprlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝐴 ) |
9 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
4 8 9
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
11 |
3 7 10
|
3eqtr4d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) ) |
12 |
|
simplr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
13 |
12
|
fveq1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) |
14 |
12
|
fveq1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) |
15 |
11 13 14
|
3eqtr3d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) |
16 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
17 |
5 16
|
syl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
18 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) |
19 |
8 18
|
syl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) |
20 |
15 17 19
|
3eqtr3d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
21 |
20
|
expr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
22 |
21
|
ralrimivva |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
23 |
|
dff13 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
24 |
1 22 23
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |