Metamath Proof Explorer


Theorem fcof1o

Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by AV, 15-Dec-2019)

Ref Expression
Assertion fcof1o ( ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 = 𝐺 ) )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) ) ) → 𝐹 : 𝐴𝐵 )
2 simplr ( ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) ) ) → 𝐺 : 𝐵𝐴 )
3 simprr ( ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) )
4 simprl ( ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) )
5 1 2 3 4 fcof1od ( ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) ) ) → 𝐹 : 𝐴1-1-onto𝐵 )
6 1 2 3 4 2fcoidinvd ( ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) ) ) → 𝐹 = 𝐺 )
7 5 6 jca ( ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 = 𝐺 ) )