Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
simplr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
3 |
|
simprr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
4 |
|
simprl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
5 |
1 2 3 4
|
fcof1od |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
6 |
1 2 3 4
|
2fcoidinvd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → ◡ 𝐹 = 𝐺 ) |
7 |
5 6
|
jca |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = 𝐺 ) ) |