| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fcof1od.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 |  | fcof1od.g | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 3 |  | fcof1od.a | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝐹 )  =  (  I   ↾  𝐴 ) ) | 
						
							| 4 |  | fcof1od.b | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐵 ) ) | 
						
							| 5 |  | fcof1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝐺  ∘  𝐹 )  =  (  I   ↾  𝐴 ) )  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 6 | 1 3 5 | syl2anc | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 7 |  | fcofo | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐵 ) )  →  𝐹 : 𝐴 –onto→ 𝐵 ) | 
						
							| 8 | 1 2 4 7 | syl3anc | ⊢ ( 𝜑  →  𝐹 : 𝐴 –onto→ 𝐵 ) | 
						
							| 9 |  | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ↔  ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐹 : 𝐴 –onto→ 𝐵 ) ) | 
						
							| 10 | 6 8 9 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |