Metamath Proof Explorer


Theorem fcof1od

Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 and fcofo . Formerly part of proof of fcof1o . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses fcof1od.f ( 𝜑𝐹 : 𝐴𝐵 )
fcof1od.g ( 𝜑𝐺 : 𝐵𝐴 )
fcof1od.a ( 𝜑 → ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) )
fcof1od.b ( 𝜑 → ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) )
Assertion fcof1od ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 fcof1od.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fcof1od.g ( 𝜑𝐺 : 𝐵𝐴 )
3 fcof1od.a ( 𝜑 → ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) )
4 fcof1od.b ( 𝜑 → ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) )
5 fcof1 ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴1-1𝐵 )
6 1 3 5 syl2anc ( 𝜑𝐹 : 𝐴1-1𝐵 )
7 fcofo ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ∧ ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐴onto𝐵 )
8 1 2 4 7 syl3anc ( 𝜑𝐹 : 𝐴onto𝐵 )
9 df-f1o ( 𝐹 : 𝐴1-1-onto𝐵 ↔ ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴onto𝐵 ) )
10 6 8 9 sylanbrc ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )