Step |
Hyp |
Ref |
Expression |
1 |
|
fcof1oinvd.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
2 |
|
fcof1oinvd.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
3 |
|
fcof1oinvd.b |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
4 |
3
|
coeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) = ( ◡ 𝐹 ∘ ( I ↾ 𝐵 ) ) ) |
5 |
|
coass |
⊢ ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) |
6 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
8 |
7
|
coeq1d |
⊢ ( 𝜑 → ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = ( ( I ↾ 𝐴 ) ∘ 𝐺 ) ) |
9 |
|
fcoi2 |
⊢ ( 𝐺 : 𝐵 ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝐺 ) = 𝐺 ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝐴 ) ∘ 𝐺 ) = 𝐺 ) |
11 |
8 10
|
eqtrd |
⊢ ( 𝜑 → ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = 𝐺 ) |
12 |
5 11
|
eqtr3id |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) = 𝐺 ) |
13 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
15 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
17 |
|
fcoi1 |
⊢ ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 → ( ◡ 𝐹 ∘ ( I ↾ 𝐵 ) ) = ◡ 𝐹 ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ ( I ↾ 𝐵 ) ) = ◡ 𝐹 ) |
19 |
4 12 18
|
3eqtr3rd |
⊢ ( 𝜑 → ◡ 𝐹 = 𝐺 ) |