Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
ffvelrn |
⊢ ( ( 𝑆 : 𝐵 ⟶ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑆 ‘ 𝑦 ) ∈ 𝐴 ) |
3 |
2
|
3ad2antl2 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑆 ‘ 𝑦 ) ∈ 𝐴 ) |
4 |
|
simpl3 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) |
5 |
4
|
fveq1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑆 ) ‘ 𝑦 ) = ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) |
6 |
|
fvco3 |
⊢ ( ( 𝑆 : 𝐵 ⟶ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑆 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
7 |
6
|
3ad2antl2 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑆 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
8 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
10 |
5 7 9
|
3eqtr3rd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 = ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
12 |
11
|
rspceeqv |
⊢ ( ( ( 𝑆 ‘ 𝑦 ) ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
13 |
3 10 12
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
14 |
13
|
ralrimiva |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
15 |
|
dffo3 |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
16 |
1 14 15
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |