| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 |  | ffvelcdm | ⊢ ( ( 𝑆 : 𝐵 ⟶ 𝐴  ∧  𝑦  ∈  𝐵 )  →  ( 𝑆 ‘ 𝑦 )  ∈  𝐴 ) | 
						
							| 3 | 2 | 3ad2antl2 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑆 ‘ 𝑦 )  ∈  𝐴 ) | 
						
							| 4 |  | simpl3 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) )  ∧  𝑦  ∈  𝐵 )  →  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) ) | 
						
							| 5 | 4 | fveq1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑆 ) ‘ 𝑦 )  =  ( (  I   ↾  𝐵 ) ‘ 𝑦 ) ) | 
						
							| 6 |  | fvco3 | ⊢ ( ( 𝑆 : 𝐵 ⟶ 𝐴  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑆 ) ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 7 | 6 | 3ad2antl2 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑆 ) ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 8 |  | fvresi | ⊢ ( 𝑦  ∈  𝐵  →  ( (  I   ↾  𝐵 ) ‘ 𝑦 )  =  𝑦 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) )  ∧  𝑦  ∈  𝐵 )  →  ( (  I   ↾  𝐵 ) ‘ 𝑦 )  =  𝑦 ) | 
						
							| 10 | 5 7 9 | 3eqtr3rd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) )  ∧  𝑦  ∈  𝐵 )  →  𝑦  =  ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑆 ‘ 𝑦 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 12 | 11 | rspceeqv | ⊢ ( ( ( 𝑆 ‘ 𝑦 )  ∈  𝐴  ∧  𝑦  =  ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 13 | 3 10 12 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) )  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) )  →  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 15 |  | dffo3 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 16 | 1 14 15 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆 : 𝐵 ⟶ 𝐴  ∧  ( 𝐹  ∘  𝑆 )  =  (  I   ↾  𝐵 ) )  →  𝐹 : 𝐴 –onto→ 𝐵 ) |