| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
| 2 |
|
df-fn |
⊢ ( 𝐹 Fn 𝐴 ↔ ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) ) |
| 3 |
|
eqimss |
⊢ ( dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴 ) |
| 4 |
|
cnvi |
⊢ ◡ I = I |
| 5 |
4
|
reseq1i |
⊢ ( ◡ I ↾ 𝐴 ) = ( I ↾ 𝐴 ) |
| 6 |
5
|
cnveqi |
⊢ ◡ ( ◡ I ↾ 𝐴 ) = ◡ ( I ↾ 𝐴 ) |
| 7 |
|
cnvresid |
⊢ ◡ ( I ↾ 𝐴 ) = ( I ↾ 𝐴 ) |
| 8 |
6 7
|
eqtr2i |
⊢ ( I ↾ 𝐴 ) = ◡ ( ◡ I ↾ 𝐴 ) |
| 9 |
8
|
coeq2i |
⊢ ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = ( 𝐹 ∘ ◡ ( ◡ I ↾ 𝐴 ) ) |
| 10 |
|
cores2 |
⊢ ( dom 𝐹 ⊆ 𝐴 → ( 𝐹 ∘ ◡ ( ◡ I ↾ 𝐴 ) ) = ( 𝐹 ∘ I ) ) |
| 11 |
9 10
|
eqtrid |
⊢ ( dom 𝐹 ⊆ 𝐴 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = ( 𝐹 ∘ I ) ) |
| 12 |
3 11
|
syl |
⊢ ( dom 𝐹 = 𝐴 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = ( 𝐹 ∘ I ) ) |
| 13 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
| 14 |
|
coi1 |
⊢ ( Rel 𝐹 → ( 𝐹 ∘ I ) = 𝐹 ) |
| 15 |
13 14
|
syl |
⊢ ( Fun 𝐹 → ( 𝐹 ∘ I ) = 𝐹 ) |
| 16 |
12 15
|
sylan9eqr |
⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 ) |
| 17 |
2 16
|
sylbi |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 ) |
| 18 |
1 17
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 ) |