Step |
Hyp |
Ref |
Expression |
1 |
|
fcoinvbr.e |
⊢ ∼ = ( ◡ 𝐹 ∘ 𝐹 ) |
2 |
1
|
breqi |
⊢ ( 𝑋 ∼ 𝑌 ↔ 𝑋 ( ◡ 𝐹 ∘ 𝐹 ) 𝑌 ) |
3 |
|
brcog |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ( ◡ 𝐹 ∘ 𝐹 ) 𝑌 ↔ ∃ 𝑧 ( 𝑋 𝐹 𝑧 ∧ 𝑧 ◡ 𝐹 𝑌 ) ) ) |
4 |
2 3
|
syl5bb |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∼ 𝑌 ↔ ∃ 𝑧 ( 𝑋 𝐹 𝑧 ∧ 𝑧 ◡ 𝐹 𝑌 ) ) ) |
5 |
4
|
3adant1 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∼ 𝑌 ↔ ∃ 𝑧 ( 𝑋 𝐹 𝑧 ∧ 𝑧 ◡ 𝐹 𝑌 ) ) ) |
6 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
7 |
6
|
eqvinc |
⊢ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ↔ ∃ 𝑧 ( 𝑧 = ( 𝐹 ‘ 𝑋 ) ∧ 𝑧 = ( 𝐹 ‘ 𝑌 ) ) ) |
8 |
|
eqcom |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = 𝑧 ) |
9 |
|
eqcom |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ 𝑌 ) = 𝑧 ) |
10 |
8 9
|
anbi12i |
⊢ ( ( 𝑧 = ( 𝐹 ‘ 𝑋 ) ∧ 𝑧 = ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝐹 ‘ 𝑋 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑌 ) = 𝑧 ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝐹 ‘ 𝑋 ) ∧ 𝑧 = ( 𝐹 ‘ 𝑌 ) ) ↔ ∃ 𝑧 ( ( 𝐹 ‘ 𝑋 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑌 ) = 𝑧 ) ) |
12 |
7 11
|
bitri |
⊢ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ↔ ∃ 𝑧 ( ( 𝐹 ‘ 𝑋 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑌 ) = 𝑧 ) ) |
13 |
|
fnbrfvb |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑧 ↔ 𝑋 𝐹 𝑧 ) ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑧 ↔ 𝑋 𝐹 𝑧 ) ) |
15 |
|
fnbrfvb |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑧 ↔ 𝑌 𝐹 𝑧 ) ) |
16 |
15
|
3adant2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑧 ↔ 𝑌 𝐹 𝑧 ) ) |
17 |
14 16
|
anbi12d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑋 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑌 ) = 𝑧 ) ↔ ( 𝑋 𝐹 𝑧 ∧ 𝑌 𝐹 𝑧 ) ) ) |
18 |
|
vex |
⊢ 𝑧 ∈ V |
19 |
|
brcnvg |
⊢ ( ( 𝑧 ∈ V ∧ 𝑌 ∈ 𝐴 ) → ( 𝑧 ◡ 𝐹 𝑌 ↔ 𝑌 𝐹 𝑧 ) ) |
20 |
18 19
|
mpan |
⊢ ( 𝑌 ∈ 𝐴 → ( 𝑧 ◡ 𝐹 𝑌 ↔ 𝑌 𝐹 𝑧 ) ) |
21 |
20
|
3ad2ant3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑧 ◡ 𝐹 𝑌 ↔ 𝑌 𝐹 𝑧 ) ) |
22 |
21
|
anbi2d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝑋 𝐹 𝑧 ∧ 𝑧 ◡ 𝐹 𝑌 ) ↔ ( 𝑋 𝐹 𝑧 ∧ 𝑌 𝐹 𝑧 ) ) ) |
23 |
17 22
|
bitr4d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑋 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑌 ) = 𝑧 ) ↔ ( 𝑋 𝐹 𝑧 ∧ 𝑧 ◡ 𝐹 𝑌 ) ) ) |
24 |
23
|
exbidv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ∃ 𝑧 ( ( 𝐹 ‘ 𝑋 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑌 ) = 𝑧 ) ↔ ∃ 𝑧 ( 𝑋 𝐹 𝑧 ∧ 𝑧 ◡ 𝐹 𝑌 ) ) ) |
25 |
12 24
|
syl5bb |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ↔ ∃ 𝑧 ( 𝑋 𝐹 𝑧 ∧ 𝑧 ◡ 𝐹 𝑌 ) ) ) |
26 |
5 25
|
bitr4d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∼ 𝑌 ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) |