Step |
Hyp |
Ref |
Expression |
1 |
|
ffvelrn |
⊢ ( ( 𝐵 : 𝐶 ⟶ 𝐷 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐵 ‘ 𝑥 ) ∈ 𝐷 ) |
2 |
1
|
adantll |
⊢ ( ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐵 ‘ 𝑥 ) ∈ 𝐷 ) |
3 |
|
ffn |
⊢ ( 𝐵 : 𝐶 ⟶ 𝐷 → 𝐵 Fn 𝐶 ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → 𝐵 Fn 𝐶 ) |
5 |
|
dffn5 |
⊢ ( 𝐵 Fn 𝐶 ↔ 𝐵 = ( 𝑥 ∈ 𝐶 ↦ ( 𝐵 ‘ 𝑥 ) ) ) |
6 |
4 5
|
sylib |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → 𝐵 = ( 𝑥 ∈ 𝐶 ↦ ( 𝐵 ‘ 𝑥 ) ) ) |
7 |
|
ffn |
⊢ ( 𝐴 : 𝐷 ⟶ 𝐸 → 𝐴 Fn 𝐷 ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → 𝐴 Fn 𝐷 ) |
9 |
|
dffn5 |
⊢ ( 𝐴 Fn 𝐷 ↔ 𝐴 = ( 𝑦 ∈ 𝐷 ↦ ( 𝐴 ‘ 𝑦 ) ) ) |
10 |
8 9
|
sylib |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → 𝐴 = ( 𝑦 ∈ 𝐷 ↦ ( 𝐴 ‘ 𝑦 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑥 ) → ( 𝐴 ‘ 𝑦 ) = ( 𝐴 ‘ ( 𝐵 ‘ 𝑥 ) ) ) |
12 |
2 6 10 11
|
fmptco |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → ( 𝐴 ∘ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐴 ‘ ( 𝐵 ‘ 𝑥 ) ) ) ) |