Metamath Proof Explorer


Theorem fcomptss

Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fcomptss.a ( 𝜑𝐹 : 𝐴𝐵 )
fcomptss.b ( 𝜑𝐵𝐶 )
fcomptss.g ( 𝜑𝐺 : 𝐶𝐷 )
Assertion fcomptss ( 𝜑 → ( 𝐺𝐹 ) = ( 𝑥𝐴 ↦ ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 fcomptss.a ( 𝜑𝐹 : 𝐴𝐵 )
2 fcomptss.b ( 𝜑𝐵𝐶 )
3 fcomptss.g ( 𝜑𝐺 : 𝐶𝐷 )
4 1 2 fssd ( 𝜑𝐹 : 𝐴𝐶 )
5 fcompt ( ( 𝐺 : 𝐶𝐷𝐹 : 𝐴𝐶 ) → ( 𝐺𝐹 ) = ( 𝑥𝐴 ↦ ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) )
6 3 4 5 syl2anc ( 𝜑 → ( 𝐺𝐹 ) = ( 𝑥𝐴 ↦ ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) )