Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fconst.1 | ⊢ 𝐵 ∈ V | |
| Assertion | fconst | ⊢ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst.1 | ⊢ 𝐵 ∈ V | |
| 2 | fconstmpt | ⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 3 | 1 2 | fnmpti | ⊢ ( 𝐴 × { 𝐵 } ) Fn 𝐴 |
| 4 | rnxpss | ⊢ ran ( 𝐴 × { 𝐵 } ) ⊆ { 𝐵 } | |
| 5 | df-f | ⊢ ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ↔ ( ( 𝐴 × { 𝐵 } ) Fn 𝐴 ∧ ran ( 𝐴 × { 𝐵 } ) ⊆ { 𝐵 } ) ) | |
| 6 | 3 4 5 | mpbir2an | ⊢ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } |