| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fconst7.p | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							fconst7.x | 
							⊢ Ⅎ 𝑥 𝐹  | 
						
						
							| 3 | 
							
								
							 | 
							fconst7.f | 
							⊢ ( 𝜑  →  𝐹  Fn  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							fconst7.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑉 )  | 
						
						
							| 5 | 
							
								
							 | 
							fconst7.e | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							fvexd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  V )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							snidg | 
							⊢ ( 𝐵  ∈  V  →  𝐵  ∈  { 𝐵 } )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  { 𝐵 } )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  { 𝐵 } )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							ralrimia | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  { 𝐵 } )  | 
						
						
							| 12 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 13 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 { 𝐵 }  | 
						
						
							| 14 | 
							
								12 13 2
							 | 
							ffnfvf | 
							⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ↔  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  { 𝐵 } ) )  | 
						
						
							| 15 | 
							
								3 11 14
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ { 𝐵 } )  | 
						
						
							| 16 | 
							
								
							 | 
							fconst2g | 
							⊢ ( 𝐵  ∈  𝑉  →  ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ↔  𝐹  =  ( 𝐴  ×  { 𝐵 } ) ) )  | 
						
						
							| 17 | 
							
								4 16
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ↔  𝐹  =  ( 𝐴  ×  { 𝐵 } ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							mpbid | 
							⊢ ( 𝜑  →  𝐹  =  ( 𝐴  ×  { 𝐵 } ) )  |