Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Functions fconstfv  
				
		 
		
			
		 
		Description:   A constant function expressed in terms of its functionality, domain, and
       value.  See also fconst2  .  (Contributed by NM , 27-Aug-2004)   (Proof
       shortened by OpenAI , 25-Mar-2020) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					fconstfv ⊢   ( 𝐹  : 𝐴  ⟶ { 𝐵  }  ↔  ( 𝐹   Fn  𝐴   ∧  ∀ 𝑥   ∈  𝐴  ( 𝐹  ‘ 𝑥  )  =  𝐵  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ffnfv ⊢  ( 𝐹  : 𝐴  ⟶ { 𝐵  }  ↔  ( 𝐹   Fn  𝐴   ∧  ∀ 𝑥   ∈  𝐴  ( 𝐹  ‘ 𝑥  )  ∈  { 𝐵  } ) )  
						
							2 
								
							 
							fvex ⊢  ( 𝐹  ‘ 𝑥  )  ∈  V  
						
							3 
								2 
							 
							elsn ⊢  ( ( 𝐹  ‘ 𝑥  )  ∈  { 𝐵  }  ↔  ( 𝐹  ‘ 𝑥  )  =  𝐵  )  
						
							4 
								3 
							 
							ralbii ⊢  ( ∀ 𝑥   ∈  𝐴  ( 𝐹  ‘ 𝑥  )  ∈  { 𝐵  }  ↔  ∀ 𝑥   ∈  𝐴  ( 𝐹  ‘ 𝑥  )  =  𝐵  )  
						
							5 
								4 
							 
							anbi2i ⊢  ( ( 𝐹   Fn  𝐴   ∧  ∀ 𝑥   ∈  𝐴  ( 𝐹  ‘ 𝑥  )  ∈  { 𝐵  } )  ↔  ( 𝐹   Fn  𝐴   ∧  ∀ 𝑥   ∈  𝐴  ( 𝐹  ‘ 𝑥  )  =  𝐵  ) )  
						
							6 
								1  5 
							 
							bitri ⊢  ( 𝐹  : 𝐴  ⟶ { 𝐵  }  ↔  ( 𝐹   Fn  𝐴   ∧  ∀ 𝑥   ∈  𝐴  ( 𝐹  ‘ 𝑥  )  =  𝐵  ) )