Metamath Proof Explorer


Theorem fconstg

Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004)

Ref Expression
Assertion fconstg ( 𝐵𝑉 → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } )

Proof

Step Hyp Ref Expression
1 sneq ( 𝑥 = 𝐵 → { 𝑥 } = { 𝐵 } )
2 1 xpeq2d ( 𝑥 = 𝐵 → ( 𝐴 × { 𝑥 } ) = ( 𝐴 × { 𝐵 } ) )
3 feq1 ( ( 𝐴 × { 𝑥 } ) = ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ↔ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝑥 } ) )
4 feq3 ( { 𝑥 } = { 𝐵 } → ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝑥 } ↔ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ) )
5 3 4 sylan9bb ( ( ( 𝐴 × { 𝑥 } ) = ( 𝐴 × { 𝐵 } ) ∧ { 𝑥 } = { 𝐵 } ) → ( ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ↔ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ) )
6 2 1 5 syl2anc ( 𝑥 = 𝐵 → ( ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ↔ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ) )
7 vex 𝑥 ∈ V
8 7 fconst ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 }
9 6 8 vtoclg ( 𝐵𝑉 → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } )