Metamath Proof Explorer


Theorem fconstmpt

Description: Representation of a constant function using the mapping operation. (Note that x cannot appear free in B .) (Contributed by NM, 12-Oct-1999) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Assertion fconstmpt ( 𝐴 × { 𝐵 } ) = ( 𝑥𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 velsn ( 𝑦 ∈ { 𝐵 } ↔ 𝑦 = 𝐵 )
2 1 anbi2i ( ( 𝑥𝐴𝑦 ∈ { 𝐵 } ) ↔ ( 𝑥𝐴𝑦 = 𝐵 ) )
3 2 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ { 𝐵 } ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
4 df-xp ( 𝐴 × { 𝐵 } ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ { 𝐵 } ) }
5 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
6 3 4 5 3eqtr4i ( 𝐴 × { 𝐵 } ) = ( 𝑥𝐴𝐵 )