Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Glauco Siliprandi  
				Functions  
				fcoss  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Composition of two mappings.  Similar to fco  , but with a weaker
       condition on the domain of F  .  (Contributed by Glauco Siliprandi , 3-Mar-2021) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						fcoss.f  
						⊢  ( 𝜑   →  𝐹  : 𝐴  ⟶ 𝐵  )  
					 
					
						 
						 
						fcoss.c  
						⊢  ( 𝜑   →  𝐶   ⊆  𝐴  )  
					 
					
						 
						 
						fcoss.g  
						⊢  ( 𝜑   →  𝐺  : 𝐷  ⟶ 𝐶  )  
					 
				
					 
					Assertion 
					fcoss  
					⊢   ( 𝜑   →  ( 𝐹   ∘  𝐺  ) : 𝐷  ⟶ 𝐵  )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							fcoss.f  
							⊢  ( 𝜑   →  𝐹  : 𝐴  ⟶ 𝐵  )  
						 
						
							2  
							
								
							 
							fcoss.c  
							⊢  ( 𝜑   →  𝐶   ⊆  𝐴  )  
						 
						
							3  
							
								
							 
							fcoss.g  
							⊢  ( 𝜑   →  𝐺  : 𝐷  ⟶ 𝐶  )  
						 
						
							4  
							
								3  2 
							 
							fssd  
							⊢  ( 𝜑   →  𝐺  : 𝐷  ⟶ 𝐴  )  
						 
						
							5  
							
								
							 
							fco  
							⊢  ( ( 𝐹  : 𝐴  ⟶ 𝐵   ∧  𝐺  : 𝐷  ⟶ 𝐴  )  →  ( 𝐹   ∘  𝐺  ) : 𝐷  ⟶ 𝐵  )  
						 
						
							6  
							
								1  4  5 
							 
							syl2anc  
							⊢  ( 𝜑   →  ( 𝐹   ∘  𝐺  ) : 𝐷  ⟶ 𝐵  )