Step |
Hyp |
Ref |
Expression |
1 |
|
ftc2re.e |
⊢ 𝐸 = ( 𝐶 (,) 𝐷 ) |
2 |
|
ftc2re.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐸 ) |
3 |
|
ftc2re.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) |
4 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐶 (,) 𝐷 ) ) |
5 |
|
eliooxr |
⊢ ( 𝐴 ∈ ( 𝐶 (,) 𝐷 ) → ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) |
7 |
6
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
8 |
6
|
simprd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
9 |
|
eliooord |
⊢ ( 𝐴 ∈ ( 𝐶 (,) 𝐷 ) → ( 𝐶 < 𝐴 ∧ 𝐴 < 𝐷 ) ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( 𝐶 < 𝐴 ∧ 𝐴 < 𝐷 ) ) |
11 |
10
|
simpld |
⊢ ( 𝜑 → 𝐶 < 𝐴 ) |
12 |
3 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐶 (,) 𝐷 ) ) |
13 |
|
eliooord |
⊢ ( 𝐵 ∈ ( 𝐶 (,) 𝐷 ) → ( 𝐶 < 𝐵 ∧ 𝐵 < 𝐷 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 𝐶 < 𝐵 ∧ 𝐵 < 𝐷 ) ) |
15 |
14
|
simprd |
⊢ ( 𝜑 → 𝐵 < 𝐷 ) |
16 |
|
iccssioo |
⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ∧ ( 𝐶 < 𝐴 ∧ 𝐵 < 𝐷 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐶 (,) 𝐷 ) ) |
17 |
7 8 11 15 16
|
syl22anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐶 (,) 𝐷 ) ) |
18 |
17 1
|
sseqtrrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐸 ) |