Step |
Hyp |
Ref |
Expression |
1 |
|
difeq2 |
⊢ ( 𝑥 = ∪ 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ∪ 𝑦 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = ∪ 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) ) |
3 |
|
eqeq1 |
⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 = ∅ ↔ ∪ 𝑦 = ∅ ) ) |
4 |
2 3
|
orbi12d |
⊢ ( 𝑥 = ∪ 𝑦 → ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ∨ ∪ 𝑦 = ∅ ) ) ) |
5 |
|
uniss |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
6 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 |
7 |
|
sspwuni |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 ↔ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) |
8 |
6 7
|
mpbi |
⊢ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ⊆ 𝐴 |
9 |
5 8
|
sstrdi |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ⊆ 𝐴 ) |
10 |
|
vuniex |
⊢ ∪ 𝑦 ∈ V |
11 |
10
|
elpw |
⊢ ( ∪ 𝑦 ∈ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) |
12 |
9 11
|
sylibr |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ 𝒫 𝐴 ) |
13 |
|
uni0c |
⊢ ( ∪ 𝑦 = ∅ ↔ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) |
14 |
13
|
notbii |
⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ¬ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) |
15 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) |
16 |
14 15
|
bitr4i |
⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ ) |
17 |
|
ssel2 |
⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
18 |
|
difeq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑧 ) ) |
19 |
18
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) ) |
20 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ∅ ↔ 𝑧 = ∅ ) ) |
21 |
19 20
|
orbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) |
22 |
21
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) |
23 |
17 22
|
sylib |
⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) |
24 |
23
|
simprd |
⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) |
25 |
24
|
ord |
⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ¬ ( 𝐴 ∖ 𝑧 ) ∈ Fin → 𝑧 = ∅ ) ) |
26 |
25
|
con1d |
⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ¬ 𝑧 = ∅ → ( 𝐴 ∖ 𝑧 ) ∈ Fin ) ) |
27 |
26
|
imp |
⊢ ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) → ( 𝐴 ∖ 𝑧 ) ∈ Fin ) |
28 |
|
elssuni |
⊢ ( 𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦 ) |
29 |
28
|
sscond |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝐴 ∖ ∪ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑧 ) ) |
30 |
|
ssfi |
⊢ ( ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ ( 𝐴 ∖ ∪ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑧 ) ) → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) |
31 |
29 30
|
sylan2 |
⊢ ( ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ 𝑧 ∈ 𝑦 ) → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) |
32 |
31
|
expcom |
⊢ ( 𝑧 ∈ 𝑦 → ( ( 𝐴 ∖ 𝑧 ) ∈ Fin → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) ) |
33 |
32
|
ad2antlr |
⊢ ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) → ( ( 𝐴 ∖ 𝑧 ) ∈ Fin → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) ) |
34 |
27 33
|
mpd |
⊢ ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) |
35 |
34
|
rexlimdva2 |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ( ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) ) |
36 |
16 35
|
syl5bi |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ( ¬ ∪ 𝑦 = ∅ → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) ) |
37 |
36
|
con1d |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ( ¬ ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin → ∪ 𝑦 = ∅ ) ) |
38 |
37
|
orrd |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ( ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ∨ ∪ 𝑦 = ∅ ) ) |
39 |
4 12 38
|
elrabd |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
40 |
39
|
ax-gen |
⊢ ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
41 |
|
ssinss1 |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
42 |
|
vex |
⊢ 𝑦 ∈ V |
43 |
42
|
elpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
44 |
42
|
inex1 |
⊢ ( 𝑦 ∩ 𝑧 ) ∈ V |
45 |
44
|
elpw |
⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
46 |
41 43 45
|
3imtr4i |
⊢ ( 𝑦 ∈ 𝒫 𝐴 → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
48 |
|
difindi |
⊢ ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) = ( ( 𝐴 ∖ 𝑦 ) ∪ ( 𝐴 ∖ 𝑧 ) ) |
49 |
|
unfi |
⊢ ( ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) → ( ( 𝐴 ∖ 𝑦 ) ∪ ( 𝐴 ∖ 𝑧 ) ) ∈ Fin ) |
50 |
48 49
|
eqeltrid |
⊢ ( ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) → ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ) |
51 |
50
|
orcd |
⊢ ( ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
52 |
|
ineq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝑧 ) = ( ∅ ∩ 𝑧 ) ) |
53 |
|
0in |
⊢ ( ∅ ∩ 𝑧 ) = ∅ |
54 |
52 53
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝑧 ) = ∅ ) |
55 |
54
|
olcd |
⊢ ( 𝑦 = ∅ → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
56 |
|
ineq2 |
⊢ ( 𝑧 = ∅ → ( 𝑦 ∩ 𝑧 ) = ( 𝑦 ∩ ∅ ) ) |
57 |
|
in0 |
⊢ ( 𝑦 ∩ ∅ ) = ∅ |
58 |
56 57
|
eqtrdi |
⊢ ( 𝑧 = ∅ → ( 𝑦 ∩ 𝑧 ) = ∅ ) |
59 |
58
|
olcd |
⊢ ( 𝑧 = ∅ → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
60 |
51 55 59
|
ccase2 |
⊢ ( ( ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
61 |
60
|
ad2ant2l |
⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
62 |
47 61
|
jca |
⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
63 |
|
difeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) |
64 |
63
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
65 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) ) |
66 |
64 65
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ) |
67 |
66
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ) |
68 |
67 22
|
anbi12i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ↔ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) ) |
69 |
|
difeq2 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ) |
70 |
69
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ) ) |
71 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑥 = ∅ ↔ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
72 |
70 71
|
orbi12d |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
73 |
72
|
elrab |
⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ↔ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
74 |
62 68 73
|
3imtr4i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
75 |
74
|
rgen2 |
⊢ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } |
76 |
40 75
|
pm3.2i |
⊢ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
77 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
78 |
|
rabexg |
⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ V ) |
79 |
|
istopg |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ V → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ) ) |
80 |
77 78 79
|
3syl |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ) ) |
81 |
76 80
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ Top ) |
82 |
|
difeq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝐴 ) ) |
83 |
|
difid |
⊢ ( 𝐴 ∖ 𝐴 ) = ∅ |
84 |
82 83
|
eqtrdi |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∖ 𝑥 ) = ∅ ) |
85 |
84
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ∅ ∈ Fin ) ) |
86 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ∅ ↔ 𝐴 = ∅ ) ) |
87 |
85 86
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ∅ ∈ Fin ∨ 𝐴 = ∅ ) ) ) |
88 |
|
pwidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) |
89 |
|
0fin |
⊢ ∅ ∈ Fin |
90 |
89
|
orci |
⊢ ( ∅ ∈ Fin ∨ 𝐴 = ∅ ) |
91 |
90
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ∈ Fin ∨ 𝐴 = ∅ ) ) |
92 |
87 88 91
|
elrabd |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
93 |
|
elssuni |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
94 |
92 93
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
95 |
8
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) |
96 |
94 95
|
eqssd |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
97 |
|
istopon |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ↔ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ Top ∧ 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ) |
98 |
81 96 97
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |