Metamath Proof Explorer


Theorem fctop2

Description: The finite complement topology on a set A . Example 3 in Munkres p. 77. (This version of fctop requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006)

Ref Expression
Assertion fctop2 ( 𝐴𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴𝑥 ) ≺ ω ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 isfinite ( ( 𝐴𝑥 ) ∈ Fin ↔ ( 𝐴𝑥 ) ≺ ω )
2 1 orbi1i ( ( ( 𝐴𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴𝑥 ) ≺ ω ∨ 𝑥 = ∅ ) )
3 2 rabbii { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴𝑥 ) ≺ ω ∨ 𝑥 = ∅ ) }
4 fctop ( 𝐴𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) )
5 3 4 eqeltrrid ( 𝐴𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴𝑥 ) ≺ ω ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) )