Description: The finite complement topology on a set A . Example 3 in Munkres p. 77. (This version of fctop requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | fctop2 | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≺ ω ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite | ⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑥 ) ≺ ω ) | |
2 | 1 | orbi1i | ⊢ ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ 𝑥 ) ≺ ω ∨ 𝑥 = ∅ ) ) |
3 | 2 | rabbii | ⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≺ ω ∨ 𝑥 = ∅ ) } |
4 | fctop | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) | |
5 | 3 4 | eqeltrrid | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≺ ω ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |