| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fczfsuppd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 2 |
|
fczfsuppd.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
| 3 |
|
fnconstg |
⊢ ( 𝑍 ∈ 𝑊 → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) |
| 4 |
|
fnfun |
⊢ ( ( 𝐵 × { 𝑍 } ) Fn 𝐵 → Fun ( 𝐵 × { 𝑍 } ) ) |
| 5 |
2 3 4
|
3syl |
⊢ ( 𝜑 → Fun ( 𝐵 × { 𝑍 } ) ) |
| 6 |
|
fczsupp0 |
⊢ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ |
| 7 |
|
0fi |
⊢ ∅ ∈ Fin |
| 8 |
6 7
|
eqeltri |
⊢ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) |
| 10 |
|
snex |
⊢ { 𝑍 } ∈ V |
| 11 |
|
xpexg |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ { 𝑍 } ∈ V ) → ( 𝐵 × { 𝑍 } ) ∈ V ) |
| 12 |
1 10 11
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 × { 𝑍 } ) ∈ V ) |
| 13 |
|
isfsupp |
⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ↔ ( Fun ( 𝐵 × { 𝑍 } ) ∧ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) ) ) |
| 14 |
12 2 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ↔ ( Fun ( 𝐵 × { 𝑍 } ) ∧ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) ) ) |
| 15 |
5 9 14
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ) |