Step |
Hyp |
Ref |
Expression |
1 |
|
fczfsuppd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
2 |
|
fczfsuppd.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
3 |
|
fnconstg |
⊢ ( 𝑍 ∈ 𝑊 → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) |
4 |
|
fnfun |
⊢ ( ( 𝐵 × { 𝑍 } ) Fn 𝐵 → Fun ( 𝐵 × { 𝑍 } ) ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝜑 → Fun ( 𝐵 × { 𝑍 } ) ) |
6 |
|
fczsupp0 |
⊢ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ |
7 |
|
0fin |
⊢ ∅ ∈ Fin |
8 |
6 7
|
eqeltri |
⊢ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) |
10 |
|
snex |
⊢ { 𝑍 } ∈ V |
11 |
|
xpexg |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ { 𝑍 } ∈ V ) → ( 𝐵 × { 𝑍 } ) ∈ V ) |
12 |
1 10 11
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 × { 𝑍 } ) ∈ V ) |
13 |
|
isfsupp |
⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ↔ ( Fun ( 𝐵 × { 𝑍 } ) ∧ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) ) ) |
14 |
12 2 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ↔ ( Fun ( 𝐵 × { 𝑍 } ) ∧ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) ) ) |
15 |
5 9 14
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ) |