Metamath Proof Explorer


Theorem fczfsuppd

Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019)

Ref Expression
Hypotheses fczfsuppd.b ( 𝜑𝐵𝑉 )
fczfsuppd.z ( 𝜑𝑍𝑊 )
Assertion fczfsuppd ( 𝜑 → ( 𝐵 × { 𝑍 } ) finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 fczfsuppd.b ( 𝜑𝐵𝑉 )
2 fczfsuppd.z ( 𝜑𝑍𝑊 )
3 fnconstg ( 𝑍𝑊 → ( 𝐵 × { 𝑍 } ) Fn 𝐵 )
4 fnfun ( ( 𝐵 × { 𝑍 } ) Fn 𝐵 → Fun ( 𝐵 × { 𝑍 } ) )
5 2 3 4 3syl ( 𝜑 → Fun ( 𝐵 × { 𝑍 } ) )
6 fczsupp0 ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅
7 0fin ∅ ∈ Fin
8 6 7 eqeltri ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin
9 8 a1i ( 𝜑 → ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin )
10 snex { 𝑍 } ∈ V
11 xpexg ( ( 𝐵𝑉 ∧ { 𝑍 } ∈ V ) → ( 𝐵 × { 𝑍 } ) ∈ V )
12 1 10 11 sylancl ( 𝜑 → ( 𝐵 × { 𝑍 } ) ∈ V )
13 isfsupp ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍𝑊 ) → ( ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ↔ ( Fun ( 𝐵 × { 𝑍 } ) ∧ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) ) )
14 12 2 13 syl2anc ( 𝜑 → ( ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ↔ ( Fun ( 𝐵 × { 𝑍 } ) ∧ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) ) )
15 5 9 14 mpbir2and ( 𝜑 → ( 𝐵 × { 𝑍 } ) finSupp 𝑍 )