Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝐵 × { 𝑍 } ) = ( 𝐵 × { 𝑍 } ) ) |
2 |
|
fnconstg |
⊢ ( 𝑍 ∈ V → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) |
4 |
|
snnzg |
⊢ ( 𝑍 ∈ V → { 𝑍 } ≠ ∅ ) |
5 |
|
simpl |
⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝐵 × { 𝑍 } ) ∈ V ) |
6 |
|
xpexcnv |
⊢ ( ( { 𝑍 } ≠ ∅ ∧ ( 𝐵 × { 𝑍 } ) ∈ V ) → 𝐵 ∈ V ) |
7 |
4 5 6
|
syl2an2 |
⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → 𝐵 ∈ V ) |
8 |
|
simpr |
⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) |
9 |
|
fnsuppeq0 |
⊢ ( ( ( 𝐵 × { 𝑍 } ) Fn 𝐵 ∧ 𝐵 ∈ V ∧ 𝑍 ∈ V ) → ( ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ ↔ ( 𝐵 × { 𝑍 } ) = ( 𝐵 × { 𝑍 } ) ) ) |
10 |
3 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ ↔ ( 𝐵 × { 𝑍 } ) = ( 𝐵 × { 𝑍 } ) ) ) |
11 |
1 10
|
mpbird |
⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ ) |
12 |
|
supp0prc |
⊢ ( ¬ ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ ) |
13 |
11 12
|
pm2.61i |
⊢ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ |